demo / app.py
fw7th's picture
removing unnecessary print statement
e6a86d8
import gradio as gr
import timm
import torch
from transformers import RobertaForSequenceClassification, RobertaTokenizer
"Vision"
vit_model = timm.create_model("hf_hub:Marqo/nsfw-image-detection-384", pretrained=True)
vit_model = vit_model.eval()
data_config = timm.data.resolve_model_data_config(vit_model)
transforms = timm.data.create_transform(**data_config, is_training=False)
"NLP"
tokenizer = RobertaTokenizer.from_pretrained("s-nlp/roberta_toxicity_classifier")
model = RobertaForSequenceClassification.from_pretrained(
"s-nlp/roberta_toxicity_classifier"
)
def moderate_image(img):
# Load your model
with torch.no_grad():
output = vit_model(transforms(img).unsqueeze(0)).softmax(dim=-1).cpu()
class_names = vit_model.pretrained_cfg["label_names"]
probabilities = output[0].tolist()
if probabilities[0] >= 0.3:
return class_names[0]
else:
return class_names[1]
def classify_toxic(text):
with torch.no_grad():
batch = tokenizer.encode(text, return_tensors="pt")
output = model(batch).logits
probabilities = torch.nn.functional.softmax(output, dim=-1)
preds = probabilities.tolist()
return "Toxic" if preds[0][0] <= 0.55 else "Safe"
# -----------------------
# Apple-Minimal Styling
# -----------------------
custom_css = """
/* Center container and control width */
.gradio-container {
max-width: 900px !important;
margin: 0 auto !important;
padding: 20px 10px !important;
}
/* Header styling */
.clean-title {
font-size: 1.9rem;
font-weight: 600;
text-align: center;
margin-bottom: 1.2rem;
letter-spacing: -0.4px;
}
/* Apple-like card sections */
.apple-card {
padding: 18px;
border-radius: 12px;
border: 1px solid rgba(var(--block-border-color-rgb), 0.14);
background: var(--block-background-fill);
box-shadow: 0 1px 3px rgba(0,0,0,0.04);
margin-bottom: 18px;
}
/* Button styling: clean, flat, subtle */
.gr-button {
border-radius: 8px !important;
background: var(--button-secondary-background-fill) !important;
border: 1px solid rgba(var(--block-border-color-rgb), 0.22) !important;
transition: 0.2s ease !important;
}
.gr-button:hover {
background: var(--button-secondary-background-fill-hover) !important;
border-color: rgba(var(--block-border-color-rgb), 0.34) !important;
}
.gr-button:active {
background: var(--button-secondary-background-fill-pressed) !important;
}
/* Reduce blank space between elements */
.gr-block {
margin: 6px 0 !important;
}
/* Label style */
label {
font-weight: 500 !important;
}
/* Make body fill full height so footer can stick */
body, .gradio-container {
min-height: 100vh !important;
display: flex;
flex-direction: column;
}
/* Main content should expand, footer sits at bottom */
.main-content {
flex: 1 0 auto;
}
.footer-custom {
flex-shrink: 0;
text-align: center;
font-size: 0.80rem;
opacity: 0.6;
padding: 14px 0;
border-top: 1px solid rgba(var(--block-border-color-rgb), 0.12);
margin-top: 25px;
}
footer {display: none !important}
"""
# -----------------------
# UI Layout
# -----------------------
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="slate"), css=custom_css
) as demo:
with gr.Column(elem_classes="main-content"):
gr.Markdown("<div class='clean-title'>Content Safety Demo</div>")
with gr.Tabs():
# ---- NSFW Image Classification ---- #
with gr.Tab("NSFW Image Detection"):
with gr.Row():
with gr.Column(scale=3):
with gr.Group(elem_classes="apple-card"):
img_in = gr.Image(type="pil", label="Upload Image")
classify_img_btn = gr.Button("Classify")
img_clear_btn = gr.ClearButton(components=img_in)
with gr.Column(scale=2):
with gr.Group(elem_classes="apple-card"):
img_out = gr.Label(label="Prediction")
classify_img_btn.click(
fn=moderate_image, inputs=img_in, outputs=img_out
)
# ---- Toxic Text Classification ---- #
with gr.Tab("Toxic Text Detection"):
with gr.Row():
with gr.Column(scale=3):
with gr.Group(elem_classes="apple-card"):
txt_in = gr.Textbox(lines=4, label="Enter Text")
classify_txt_btn = gr.Button("Analyze")
text_clear_btn = gr.ClearButton(components=txt_in)
with gr.Column(scale=2):
with gr.Group(elem_classes="apple-card"):
txt_out = gr.Label(label="Prediction")
classify_txt_btn.click(classify_toxic, inputs=txt_in, outputs=txt_out)
gr.Markdown(
"<div class='footer-custom'>Demo by 7th • Powered by Transformers</div>"
)
if __name__ == "__main__":
demo.launch()