import gradio as gr import timm import torch from transformers import RobertaForSequenceClassification, RobertaTokenizer "Vision" vit_model = timm.create_model("hf_hub:Marqo/nsfw-image-detection-384", pretrained=True) vit_model = vit_model.eval() data_config = timm.data.resolve_model_data_config(vit_model) transforms = timm.data.create_transform(**data_config, is_training=False) "NLP" tokenizer = RobertaTokenizer.from_pretrained("s-nlp/roberta_toxicity_classifier") model = RobertaForSequenceClassification.from_pretrained( "s-nlp/roberta_toxicity_classifier" ) def moderate_image(img): # Load your model with torch.no_grad(): output = vit_model(transforms(img).unsqueeze(0)).softmax(dim=-1).cpu() class_names = vit_model.pretrained_cfg["label_names"] probabilities = output[0].tolist() if probabilities[0] >= 0.3: return class_names[0] else: return class_names[1] def classify_toxic(text): with torch.no_grad(): batch = tokenizer.encode(text, return_tensors="pt") output = model(batch).logits probabilities = torch.nn.functional.softmax(output, dim=-1) preds = probabilities.tolist() return "Toxic" if preds[0][0] <= 0.55 else "Safe" # ----------------------- # Apple-Minimal Styling # ----------------------- custom_css = """ /* Center container and control width */ .gradio-container { max-width: 900px !important; margin: 0 auto !important; padding: 20px 10px !important; } /* Header styling */ .clean-title { font-size: 1.9rem; font-weight: 600; text-align: center; margin-bottom: 1.2rem; letter-spacing: -0.4px; } /* Apple-like card sections */ .apple-card { padding: 18px; border-radius: 12px; border: 1px solid rgba(var(--block-border-color-rgb), 0.14); background: var(--block-background-fill); box-shadow: 0 1px 3px rgba(0,0,0,0.04); margin-bottom: 18px; } /* Button styling: clean, flat, subtle */ .gr-button { border-radius: 8px !important; background: var(--button-secondary-background-fill) !important; border: 1px solid rgba(var(--block-border-color-rgb), 0.22) !important; transition: 0.2s ease !important; } .gr-button:hover { background: var(--button-secondary-background-fill-hover) !important; border-color: rgba(var(--block-border-color-rgb), 0.34) !important; } .gr-button:active { background: var(--button-secondary-background-fill-pressed) !important; } /* Reduce blank space between elements */ .gr-block { margin: 6px 0 !important; } /* Label style */ label { font-weight: 500 !important; } /* Make body fill full height so footer can stick */ body, .gradio-container { min-height: 100vh !important; display: flex; flex-direction: column; } /* Main content should expand, footer sits at bottom */ .main-content { flex: 1 0 auto; } .footer-custom { flex-shrink: 0; text-align: center; font-size: 0.80rem; opacity: 0.6; padding: 14px 0; border-top: 1px solid rgba(var(--block-border-color-rgb), 0.12); margin-top: 25px; } footer {display: none !important} """ # ----------------------- # UI Layout # ----------------------- with gr.Blocks( theme=gr.themes.Soft(primary_hue="violet", secondary_hue="slate"), css=custom_css ) as demo: with gr.Column(elem_classes="main-content"): gr.Markdown("
Content Safety Demo
") with gr.Tabs(): # ---- NSFW Image Classification ---- # with gr.Tab("NSFW Image Detection"): with gr.Row(): with gr.Column(scale=3): with gr.Group(elem_classes="apple-card"): img_in = gr.Image(type="pil", label="Upload Image") classify_img_btn = gr.Button("Classify") img_clear_btn = gr.ClearButton(components=img_in) with gr.Column(scale=2): with gr.Group(elem_classes="apple-card"): img_out = gr.Label(label="Prediction") classify_img_btn.click( fn=moderate_image, inputs=img_in, outputs=img_out ) # ---- Toxic Text Classification ---- # with gr.Tab("Toxic Text Detection"): with gr.Row(): with gr.Column(scale=3): with gr.Group(elem_classes="apple-card"): txt_in = gr.Textbox(lines=4, label="Enter Text") classify_txt_btn = gr.Button("Analyze") text_clear_btn = gr.ClearButton(components=txt_in) with gr.Column(scale=2): with gr.Group(elem_classes="apple-card"): txt_out = gr.Label(label="Prediction") classify_txt_btn.click(classify_toxic, inputs=txt_in, outputs=txt_out) gr.Markdown( "" ) if __name__ == "__main__": demo.launch()