Spaces:
Sleeping
Sleeping
File size: 5,472 Bytes
e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 176915d e92da9e f812c6c e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e 776b898 e92da9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Optional
import requests
import torch
import re
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import hf_hub_download
import logging
logger = logging.getLogger("app")
logging.basicConfig(level=logging.INFO)
# ===========================
# CONFIG
# ===========================
HF_MODEL_REPO = "gaidasalsaa/model-indobertweet-terbaru"
BASE_MODEL = "indolem/indobertweet-base-uncased"
PT_FILE = "model_indobertweet.pth"
BEARER_TOKEN = "AAAAAAAAAAAAAAAAAAAAACOx5wEAAAAA8dmBFQL26Vn%2FEWRVeQu%2BiTqdd%2F4%3DE8QcDTWabLJphye8PVICImVIHd1BLMB9fEU3pxJGrpO1Uw2TsN"
# ===========================
# GLOBAL MODEL
# ===========================
tokenizer = None
model = None
# ===========================
# TEXT CLEANING
# ===========================
def clean_text(t):
t = t.lower()
t = re.sub(r"http\S+|www\.\S+", "", t)
t = re.sub(r"@\w+", "", t)
t = re.sub(r"#(\w+)", r"\1", t)
return t.strip()
# ===========================
# LOAD MODEL
# ===========================
def load_model_once():
global tokenizer, model
if tokenizer is not None and model is not None:
logger.info("Model already loaded.")
return
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
logger.info("Downloading model weights...")
model_path = hf_hub_download(
repo_id=HF_MODEL_REPO,
filename=PT_FILE,
)
logger.info("Loading IndoBERTweet architecture...")
model = AutoModelForSequenceClassification.from_pretrained(
BASE_MODEL,
num_labels=2
)
logger.info("Loading state_dict...")
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict)
model.eval()
logger.info("MODEL READY")
# ===========================
# FASTAPI
# ===========================
app = FastAPI(title="Stress Detection API")
@app.on_event("startup")
def startup_event():
load_model_once()
class StressResponse(BaseModel):
message: str
data: Optional[dict] = None
# ===========================
# TWITTER API
# ===========================
def get_user_id(username):
url = f"https://api.x.com/2/users/by/username/{username}"
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
try:
r = requests.get(url, headers=headers, timeout=10)
if r.status_code != 200:
return None, r.json()
return r.json()["data"]["id"], r.json()
except:
return None, {"error": "Request failed"}
def fetch_tweets(user_id, limit=25):
url = f"https://api.x.com/2/users/{user_id}/tweets"
params = {"max_results": limit, "tweet.fields": "id,text,created_at"}
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
try:
r = requests.get(url, headers=headers, params=params, timeout=10)
if r.status_code != 200:
return None, r.json()
data = r.json().get("data", [])
return [t["text"] for t in data], r.json()
except:
return None, {"error": "Request failed"}
# ===========================
# KEYWORDS
# ===========================
def extract_keywords(tweets):
stress_words = [
"gelisah","cemas","tidur","takut","hati","resah","sampe","tenang",
"suka","mulu","sedih","ngerasa","gimana","gatau","perasaan",
"nangis","deg","khawatir","pikiran","harap","gabisa","bener",
"pengen","sakit","susah","bangun","biar","jam","kaya","bingung",
"mikir","tuhan","mikirin","bawaannya","marah","tbtb","anjir",
"cape","panik","enak","kali","pusing","semoga","kadang","langsung",
"kemarin","tugas","males"
]
found = set()
for t in tweets:
lower = t.lower()
for w in stress_words:
if w in lower:
found.add(w)
return list(found)
# ===========================
# INFERENCE
# ===========================
def predict_stress(text):
text = clean_text(text)
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128
)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)[0]
label = int(torch.argmax(probs).item())
return label, float(probs[1])
# ===========================
# ROUTE
# ===========================
@app.get("/analyze/{username}", response_model=StressResponse)
def analyze(username: str):
user_id, _ = get_user_id(username)
if user_id is None:
return StressResponse(message="Failed to fetch profile", data=None)
tweets, _ = fetch_tweets(user_id)
if not tweets:
return StressResponse(message="No tweets available", data=None)
labels = [predict_stress(t)[0] for t in tweets]
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
# 4-level status
if stress_percentage <= 25:
status = 0
elif stress_percentage <= 50:
status = 1
elif stress_percentage <= 75:
status = 2
else:
status = 3
keywords = extract_keywords(tweets)
return StressResponse(
message="Analysis complete",
data={
"username": username,
"total_tweets": len(tweets),
"stress_level": stress_percentage,
"keywords": keywords,
"stress_status": status
}
) |