gaidasalsaa's picture
adding application, model, dockerfile, and requirements
1700a9a
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Optional
import torch
import subprocess
import json
from transformers import AutoTokenizer, BertForSequenceClassification
from huggingface_hub import hf_hub_download
import logging
logger = logging.getLogger("app")
logging.basicConfig(level=logging.INFO)
# =====================================================
# CONFIG
# =====================================================
HF_MODEL_REPO = "gaidasalsaa/indobertweet-xstress-model"
BASE_MODEL = "indolem/indobertweet-base-uncased"
PT_FILE = "best_indobertweet.pth"
# =====================================================
# GLOBAL MODEL STORAGE
# =====================================================
tokenizer = None
model = None
# =====================================================
# LOAD MODEL
# =====================================================
def load_model_once():
global tokenizer, model
if tokenizer is not None and model is not None:
return
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
logger.info("Downloading fine-tuned weights...")
model_path = hf_hub_download(repo_id=HF_MODEL_REPO, filename=PT_FILE)
logger.info("Loading base model architecture...")
model = BertForSequenceClassification.from_pretrained(
BASE_MODEL,
num_labels=2
)
logger.info("Loading weight .pth...")
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict, strict=True)
model.to("cpu")
model.eval()
logger.info("MODEL READY")
# =====================================================
# FASTAPI
# =====================================================
app = FastAPI(title="Stress Detection API")
@app.on_event("startup")
def startup_event():
load_model_once()
class StressResponse(BaseModel):
message: str
data: Optional[dict] = None
# =====================================================
# SNSCRAPE FETCH TWEETS
# =====================================================
def fetch_tweets_snscrape(username, limit=50):
tweets = []
try:
command = [
"snscrape",
"--jsonl",
"--max-results", str(limit),
f"twitter-user {username}"
]
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode != 0:
return None
for line in result.stdout.splitlines():
item = json.loads(line)
if "content" in item:
tweets.append(item["content"])
return tweets
except Exception:
return None
# =====================================================
# KEYWORD EXTRACTION
# =====================================================
def extract_keywords(tweets):
stress_words = [
"capek", "cape", "capai", "letih", "lelah", "pusing",
"stress", "stres", "burnout", "kesal", "badmood",
"sedih", "tertekan", "muak", "bosan"
]
found = set()
for t in tweets:
lower = t.lower()
for word in stress_words:
if word in lower:
found.add(word)
return list(found)
# =====================================================
# MODEL INFERENCE
# =====================================================
def predict_stress(text):
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128
)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)[0]
label = torch.argmax(probs).item()
return label
# =====================================================
# API ROUTE
# =====================================================
@app.get("/analyze/{username}", response_model=StressResponse)
def analyze(username: str):
tweets = fetch_tweets_snscrape(username)
if tweets is None or len(tweets) == 0:
return StressResponse(message="No tweets available", data=None)
labels = [predict_stress(t) for t in tweets]
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
if stress_percentage <= 25:
status = 0
elif stress_percentage <= 50:
status = 1
elif stress_percentage <= 75:
status = 2
else:
status = 3
keywords = extract_keywords(tweets)
return StressResponse(
message="Analysis complete",
data={
"username": username,
"total_tweets": len(tweets),
"stress_level": stress_percentage,
"keywords": keywords, # kalau tidak ketemu => []
"stress_status": status
}
)