Mathematics Batch 01 - Number Theory - Programming Framework Analysis

This document presents number theory processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.

1. Prime Number Generation Process

graph TD A1[Range Definition] --> B1[Sieve Algorithm Selection] C1[Upper Bound] --> D1[Memory Allocation] E1[Optimization Strategy] --> F1[Algorithm Implementation] B1 --> G1[Eratosthenes Sieve] D1 --> H1[Boolean Array Creation] F1 --> I1[Marking Strategy] G1 --> J1[Initialize All True] H1 --> K1[Array Size Calculation] I1 --> L1[Prime Detection] J1 --> M1[Mark 0 and 1 False] K1 --> L1 L1 --> N1[Square Root Optimization] M1 --> O1[Iterate from 2] N1 --> P1[Stop at Square Root] O1 --> Q1[Prime Number Process] P1 --> R1[Mark Multiples False] Q1 --> S1[Collect Prime Numbers] R1 --> T1[Prime Number Result] S1 --> U1[Prime Number Validation] T1 --> V1[Prime Number Count] U1 --> W1[Prime Number Output] V1 --> X1[Prime Number Analysis] W1 --> Y1[Prime Number Final Result] X1 --> Z1[Prime Number Analysis Complete] style A1 fill:#ff6b6b,color:#fff style C1 fill:#ff6b6b,color:#fff style E1 fill:#ff6b6b,color:#fff style B1 fill:#ffd43b,color:#000 style D1 fill:#ffd43b,color:#000 style F1 fill:#ffd43b,color:#000 style G1 fill:#ffd43b,color:#000 style H1 fill:#ffd43b,color:#000 style I1 fill:#ffd43b,color:#000 style J1 fill:#ffd43b,color:#000 style K1 fill:#ffd43b,color:#000 style L1 fill:#ffd43b,color:#000 style M1 fill:#ffd43b,color:#000 style N1 fill:#ffd43b,color:#000 style O1 fill:#ffd43b,color:#000 style P1 fill:#ffd43b,color:#000 style Q1 fill:#ffd43b,color:#000 style R1 fill:#ffd43b,color:#000 style S1 fill:#ffd43b,color:#000 style T1 fill:#ffd43b,color:#000 style U1 fill:#ffd43b,color:#000 style V1 fill:#ffd43b,color:#000 style W1 fill:#ffd43b,color:#000 style X1 fill:#ffd43b,color:#000 style Y1 fill:#ffd43b,color:#000 style Z1 fill:#ffd43b,color:#000 style M1 fill:#51cf66,color:#fff style N1 fill:#51cf66,color:#fff style O1 fill:#51cf66,color:#fff style P1 fill:#51cf66,color:#fff style Q1 fill:#51cf66,color:#fff style R1 fill:#51cf66,color:#fff style S1 fill:#51cf66,color:#fff style T1 fill:#51cf66,color:#fff style U1 fill:#51cf66,color:#fff style V1 fill:#51cf66,color:#fff style W1 fill:#51cf66,color:#fff style X1 fill:#51cf66,color:#fff style Y1 fill:#51cf66,color:#fff style Z1 fill:#51cf66,color:#fff style Z1 fill:#b197fc,color:#fff
Triggers & Inputs
Number Theory Methods
Prime Operations
Intermediates
Products
Figure 1. Prime Number Generation Process. This number theory process visualization demonstrates the Sieve of Eratosthenes algorithm. The flowchart shows range inputs and optimization strategies, number theory methods and sieve algorithms, prime operations and marking strategies, intermediate results, and final prime number outputs.

2. Modular Arithmetic Process

graph TD A2[Integer a] --> B2[Modulus m] C2[Operation Type] --> D2[Modular Arithmetic] E2[Congruence Analysis] --> F2[Residue Calculation] B2 --> G2[Modulo Operation] D2 --> H2[Addition Modulo m] F2 --> I2[Multiplication Modulo m] G2 --> J2[Division Modulo m] H2 --> K2[Subtraction Modulo m] I2 --> L2[Exponentiation Modulo m] J2 --> M2[Multiplicative Inverse] K2 --> L2 L2 --> N2[Fermat Little Theorem] M2 --> O2[Extended Euclidean Algorithm] N2 --> P2[Euler Totient Function] O2 --> Q2[Modular Arithmetic Process] P2 --> R2[Chinese Remainder Theorem] Q2 --> S2[Modular Arithmetic Validation] R2 --> T2[Modular Arithmetic Result] S2 --> U2[Modular Arithmetic Analysis] T2 --> V2[Modular Arithmetic Parameters] U2 --> W2[Modular Arithmetic Output] V2 --> X2[Modular Arithmetic Analysis] W2 --> Y2[Modular Arithmetic Final Result] X2 --> Z2[Modular Arithmetic Analysis Complete] style A2 fill:#ff6b6b,color:#fff style C2 fill:#ff6b6b,color:#fff style E2 fill:#ff6b6b,color:#fff style B2 fill:#ffd43b,color:#000 style D2 fill:#ffd43b,color:#000 style F2 fill:#ffd43b,color:#000 style G2 fill:#ffd43b,color:#000 style H2 fill:#ffd43b,color:#000 style I2 fill:#ffd43b,color:#000 style J2 fill:#ffd43b,color:#000 style K2 fill:#ffd43b,color:#000 style L2 fill:#ffd43b,color:#000 style M2 fill:#ffd43b,color:#000 style N2 fill:#ffd43b,color:#000 style O2 fill:#ffd43b,color:#000 style P2 fill:#ffd43b,color:#000 style Q2 fill:#ffd43b,color:#000 style R2 fill:#ffd43b,color:#000 style S2 fill:#ffd43b,color:#000 style T2 fill:#ffd43b,color:#000 style U2 fill:#ffd43b,color:#000 style V2 fill:#ffd43b,color:#000 style W2 fill:#ffd43b,color:#000 style X2 fill:#ffd43b,color:#000 style Y2 fill:#ffd43b,color:#000 style Z2 fill:#ffd43b,color:#000 style M2 fill:#51cf66,color:#fff style N2 fill:#51cf66,color:#fff style O2 fill:#51cf66,color:#fff style P2 fill:#51cf66,color:#fff style Q2 fill:#51cf66,color:#fff style R2 fill:#51cf66,color:#fff style S2 fill:#51cf66,color:#fff style T2 fill:#51cf66,color:#fff style U2 fill:#51cf66,color:#fff style V2 fill:#51cf66,color:#fff style W2 fill:#51cf66,color:#fff style X2 fill:#51cf66,color:#fff style Y2 fill:#51cf66,color:#fff style Z2 fill:#51cf66,color:#fff style Z2 fill:#b197fc,color:#fff
Triggers & Inputs
Modular Methods
Modular Operations
Intermediates
Products
Figure 2. Modular Arithmetic Process. This number theory process visualization demonstrates modular arithmetic operations and congruence analysis. The flowchart shows integer inputs and operation types, modular methods and arithmetic operations, modular operations and residue calculations, intermediate results, and final modular arithmetic outputs.

3. Diophantine Equations Process

graph TD A3[Linear Equation] --> B3[Variable Analysis] C3[Coefficient Analysis] --> D3[Solution Strategy] E3[Integer Constraints] --> F3[Existence Check] B3 --> G3[Two Variable Equation] D3 --> H3[Extended Euclidean Algorithm] F3 --> I3[GCD Analysis] G3 --> J3[General Solution] H3 --> K3[Particular Solution] I3 --> L3[Parametric Form] J3 --> M3[Solution Verification] K3 --> L3 L3 --> N3[Solution Validation] M3 --> O3[Integer Solutions] N3 --> P3[Solution Bounds] O3 --> Q3[Diophantine Equations Process] P3 --> R3[Solution Enumeration] Q3 --> S3[Diophantine Equations Validation] R3 --> T3[Diophantine Equations Result] S3 --> U3[Diophantine Equations Analysis] T3 --> V3[Diophantine Equations Parameters] U3 --> W3[Diophantine Equations Output] V3 --> X3[Diophantine Equations Analysis] W3 --> Y3[Diophantine Equations Final Result] X3 --> Z3[Diophantine Equations Analysis Complete] style A3 fill:#ff6b6b,color:#fff style C3 fill:#ff6b6b,color:#fff style E3 fill:#ff6b6b,color:#fff style B3 fill:#ffd43b,color:#000 style D3 fill:#ffd43b,color:#000 style F3 fill:#ffd43b,color:#000 style G3 fill:#ffd43b,color:#000 style H3 fill:#ffd43b,color:#000 style I3 fill:#ffd43b,color:#000 style J3 fill:#ffd43b,color:#000 style K3 fill:#ffd43b,color:#000 style L3 fill:#ffd43b,color:#000 style M3 fill:#ffd43b,color:#000 style N3 fill:#ffd43b,color:#000 style O3 fill:#ffd43b,color:#000 style P3 fill:#ffd43b,color:#000 style Q3 fill:#ffd43b,color:#000 style R3 fill:#ffd43b,color:#000 style S3 fill:#ffd43b,color:#000 style T3 fill:#ffd43b,color:#000 style U3 fill:#ffd43b,color:#000 style V3 fill:#ffd43b,color:#000 style W3 fill:#ffd43b,color:#000 style X3 fill:#ffd43b,color:#000 style Y3 fill:#ffd43b,color:#000 style Z3 fill:#ffd43b,color:#000 style M3 fill:#51cf66,color:#fff style N3 fill:#51cf66,color:#fff style O3 fill:#51cf66,color:#fff style P3 fill:#51cf66,color:#fff style Q3 fill:#51cf66,color:#fff style R3 fill:#51cf66,color:#fff style S3 fill:#51cf66,color:#fff style T3 fill:#51cf66,color:#fff style U3 fill:#51cf66,color:#fff style V3 fill:#51cf66,color:#fff style W3 fill:#51cf66,color:#fff style X3 fill:#51cf66,color:#fff style Y3 fill:#51cf66,color:#fff style Z3 fill:#51cf66,color:#fff style Z3 fill:#b197fc,color:#fff
Triggers & Inputs
Diophantine Methods
Solution Operations
Intermediates
Products
Figure 3. Diophantine Equations Process. This number theory process visualization demonstrates integer solution finding for linear equations. The flowchart shows equation inputs and coefficient analysis, Diophantine methods and solution strategies, solution operations and verification, intermediate results, and final Diophantine equation outputs.