Mathematics Batch 06 - Discrete Mathematics - Programming Framework Analysis

This document presents discrete mathematics processes analyzed using the Programming Framework methodology. Each process is represented as a computational flowchart with standardized color coding: Red for triggers/inputs, Yellow for structures/objects, Green for processing/operations, Blue for intermediates/states, and Violet for products/outputs. Yellow nodes use black text for optimal readability, while all other colors use white text.

1. Graph Theory Algorithms Process

graph TD A1[Graph G V E] --> B1[Graph Representation] C1[Algorithm Selection] --> D1[Method Choice] E1[Graph Properties] --> F1[Property Analysis] B1 --> G1[Adjacency Matrix] D1 --> H1[Shortest Path Algorithm] F1 --> I1[Graph Connectivity] G1 --> J1[Adjacency List] H1 --> K1[Dijkstra Algorithm] I1 --> L1[Graph Traversal] J1 --> M1[Graph Structure] K1 --> N1[Bellman Ford Algorithm] L1 --> O1[Depth First Search] M1 --> P1[Vertex Analysis] N1 --> O1 O1 --> Q1[Breadth First Search] P1 --> R1[Edge Analysis] Q1 --> S1[Minimum Spanning Tree] R1 --> T1[Graph Coloring] S1 --> U1[Kruskal Algorithm] T1 --> V1[Network Flow] U1 --> W1[Graph Algorithm Result] V1 --> X1[Ford Fulkerson Algorithm] W1 --> Y1[Graph Analysis] X1 --> Z1[Graph Theory Output] Y1 --> AA1[Graph Theory Analysis] Z1 --> BB1[Graph Theory Final Result] AA1 --> CC1[Graph Theory Analysis Complete] style A1 fill:#ff6b6b,color:#fff style C1 fill:#ff6b6b,color:#fff style E1 fill:#ff6b6b,color:#fff style B1 fill:#ffd43b,color:#000 style D1 fill:#ffd43b,color:#000 style F1 fill:#ffd43b,color:#000 style G1 fill:#ffd43b,color:#000 style H1 fill:#ffd43b,color:#000 style I1 fill:#ffd43b,color:#000 style J1 fill:#ffd43b,color:#000 style K1 fill:#ffd43b,color:#000 style L1 fill:#ffd43b,color:#000 style M1 fill:#ffd43b,color:#000 style N1 fill:#ffd43b,color:#000 style O1 fill:#ffd43b,color:#000 style P1 fill:#ffd43b,color:#000 style Q1 fill:#ffd43b,color:#000 style R1 fill:#ffd43b,color:#000 style S1 fill:#ffd43b,color:#000 style T1 fill:#ffd43b,color:#000 style U1 fill:#ffd43b,color:#000 style V1 fill:#ffd43b,color:#000 style W1 fill:#ffd43b,color:#000 style X1 fill:#ffd43b,color:#000 style Y1 fill:#ffd43b,color:#000 style Z1 fill:#ffd43b,color:#000 style AA1 fill:#ffd43b,color:#000 style BB1 fill:#ffd43b,color:#000 style CC1 fill:#ffd43b,color:#000 style M1 fill:#51cf66,color:#fff style N1 fill:#51cf66,color:#fff style O1 fill:#51cf66,color:#fff style P1 fill:#51cf66,color:#fff style Q1 fill:#51cf66,color:#fff style R1 fill:#51cf66,color:#fff style S1 fill:#51cf66,color:#fff style T1 fill:#51cf66,color:#fff style U1 fill:#51cf66,color:#fff style V1 fill:#51cf66,color:#fff style W1 fill:#51cf66,color:#fff style X1 fill:#51cf66,color:#fff style Y1 fill:#51cf66,color:#fff style Z1 fill:#51cf66,color:#fff style AA1 fill:#51cf66,color:#fff style BB1 fill:#51cf66,color:#fff style CC1 fill:#51cf66,color:#fff style CC1 fill:#b197fc,color:#fff
Triggers & Inputs
Graph Theory Methods
Graph Operations
Intermediates
Products
Figure 1. Graph Theory Algorithms Process. This discrete mathematics process visualization demonstrates shortest path, minimum spanning tree, and network flow algorithms. The flowchart shows graph inputs and properties, graph theory methods and algorithms, graph operations and calculations, intermediate results, and final graph theory outputs.

2. Combinatorics Process

graph TD A2[Combinatorial Problem] --> B2[Counting Method Selection] C2[Permutation Analysis] --> D2[Combination Analysis] E2[Counting Principles] --> F2[Principle Application] B2 --> G2[Multiplication Principle] D2 --> H2[Combination Formula] F2 --> I2[Addition Principle] G2 --> J2[Permutation Formula] H2 --> K2[Binomial Coefficient] I2 --> L2[Inclusion Exclusion] J2 --> M2[Factorial Calculation] K2 --> N2[Pascal Triangle] L2 --> O2[Set Cardinality] M2 --> P2[Arrangement Counting] N2 --> O2 O2 --> Q2[Partition Counting] P2 --> R2[Selection Counting] Q2 --> S2[Generating Functions] R2 --> T2[Combinatorial Identity] S2 --> U2[Recurrence Relations] T2 --> V2[Combinatorial Proof] U2 --> W2[Combinatorial Result] V2 --> X2[Combinatorial Analysis] W2 --> Y2[Combinatorial Output] X2 --> Z2[Combinatorial Analysis Output] Y2 --> AA2[Combinatorial Analysis Final Result] Z2 --> BB2[Combinatorial Analysis Complete] AA2 --> CC2[Combinatorial Analysis Output] style A2 fill:#ff6b6b,color:#fff style C2 fill:#ff6b6b,color:#fff style E2 fill:#ff6b6b,color:#fff style B2 fill:#ffd43b,color:#000 style D2 fill:#ffd43b,color:#000 style F2 fill:#ffd43b,color:#000 style G2 fill:#ffd43b,color:#000 style H2 fill:#ffd43b,color:#000 style I2 fill:#ffd43b,color:#000 style J2 fill:#ffd43b,color:#000 style K2 fill:#ffd43b,color:#000 style L2 fill:#ffd43b,color:#000 style M2 fill:#ffd43b,color:#000 style N2 fill:#ffd43b,color:#000 style O2 fill:#ffd43b,color:#000 style P2 fill:#ffd43b,color:#000 style Q2 fill:#ffd43b,color:#000 style R2 fill:#ffd43b,color:#000 style S2 fill:#ffd43b,color:#000 style T2 fill:#ffd43b,color:#000 style U2 fill:#ffd43b,color:#000 style V2 fill:#ffd43b,color:#000 style W2 fill:#ffd43b,color:#000 style X2 fill:#ffd43b,color:#000 style Y2 fill:#ffd43b,color:#000 style Z2 fill:#ffd43b,color:#000 style AA2 fill:#ffd43b,color:#000 style BB2 fill:#ffd43b,color:#000 style CC2 fill:#ffd43b,color:#000 style M2 fill:#51cf66,color:#fff style N2 fill:#51cf66,color:#fff style O2 fill:#51cf66,color:#fff style P2 fill:#51cf66,color:#fff style Q2 fill:#51cf66,color:#fff style R2 fill:#51cf66,color:#fff style S2 fill:#51cf66,color:#fff style T2 fill:#51cf66,color:#fff style U2 fill:#51cf66,color:#fff style V2 fill:#51cf66,color:#fff style W2 fill:#51cf66,color:#fff style X2 fill:#51cf66,color:#fff style Y2 fill:#51cf66,color:#fff style Z2 fill:#51cf66,color:#fff style AA2 fill:#51cf66,color:#fff style BB2 fill:#51cf66,color:#fff style CC2 fill:#51cf66,color:#fff style CC2 fill:#b197fc,color:#fff
Triggers & Inputs
Combinatorial Methods
Counting Operations
Intermediates
Products
Figure 2. Combinatorics Process. This discrete mathematics process visualization demonstrates permutations, combinations, and counting principles. The flowchart shows combinatorial problem inputs and principles, combinatorial methods and formulas, counting operations and calculations, intermediate results, and final combinatorial analysis outputs.

3. Logic & Set Theory Process

graph TD A3[Logical Statement Input] --> B3[Logical Analysis] C3[Set Operations] --> D3[Set Theory Application] E3[Proof Techniques] --> F3[Proof Strategy] B3 --> G3[Boolean Algebra] D3 --> H3[Set Union Intersection] F3 --> I3[Direct Proof] G3 --> J3[Logical Connectives] H3 --> K3[Set Complement] I3 --> L3[Contradiction Proof] J3 --> M3[Truth Tables] K3 --> L3 L3 --> N3[Induction Proof] M3 --> O3[Logical Equivalence] N3 --> P3[Proof by Cases] O3 --> Q3[Set Cardinality] P3 --> R3[Proof Validation] Q3 --> S3[Set Operations Result] R3 --> T3[Logical Result] S3 --> U3[Set Theory Analysis] T3 --> V3[Logical Analysis] U3 --> W3[Logic Set Theory Result] V3 --> X3[Logic Set Theory Analysis] W3 --> Y3[Logic Set Theory Output] X3 --> Z3[Logic Set Theory Analysis Output] Y3 --> AA3[Logic Set Theory Analysis Final Result] Z3 --> BB3[Logic Set Theory Analysis Complete] AA3 --> CC3[Logic Set Theory Analysis Output] style A3 fill:#ff6b6b,color:#fff style C3 fill:#ff6b6b,color:#fff style E3 fill:#ff6b6b,color:#fff style B3 fill:#ffd43b,color:#000 style D3 fill:#ffd43b,color:#000 style F3 fill:#ffd43b,color:#000 style G3 fill:#ffd43b,color:#000 style H3 fill:#ffd43b,color:#000 style I3 fill:#ffd43b,color:#000 style J3 fill:#ffd43b,color:#000 style K3 fill:#ffd43b,color:#000 style L3 fill:#ffd43b,color:#000 style M3 fill:#ffd43b,color:#000 style N3 fill:#ffd43b,color:#000 style O3 fill:#ffd43b,color:#000 style P3 fill:#ffd43b,color:#000 style Q3 fill:#ffd43b,color:#000 style R3 fill:#ffd43b,color:#000 style S3 fill:#ffd43b,color:#000 style T3 fill:#ffd43b,color:#000 style U3 fill:#ffd43b,color:#000 style V3 fill:#ffd43b,color:#000 style W3 fill:#ffd43b,color:#000 style X3 fill:#ffd43b,color:#000 style Y3 fill:#ffd43b,color:#000 style Z3 fill:#ffd43b,color:#000 style AA3 fill:#ffd43b,color:#000 style BB3 fill:#ffd43b,color:#000 style CC3 fill:#ffd43b,color:#000 style M3 fill:#51cf66,color:#fff style N3 fill:#51cf66,color:#fff style O3 fill:#51cf66,color:#fff style P3 fill:#51cf66,color:#fff style Q3 fill:#51cf66,color:#fff style R3 fill:#51cf66,color:#fff style S3 fill:#51cf66,color:#fff style T3 fill:#51cf66,color:#fff style U3 fill:#51cf66,color:#fff style V3 fill:#51cf66,color:#fff style W3 fill:#51cf66,color:#fff style X3 fill:#51cf66,color:#fff style Y3 fill:#51cf66,color:#fff style Z3 fill:#51cf66,color:#fff style AA3 fill:#51cf66,color:#fff style BB3 fill:#51cf66,color:#fff style CC3 fill:#51cf66,color:#fff style CC3 fill:#b197fc,color:#fff
Triggers & Inputs
Logic Set Methods
Proof Operations
Intermediates
Products
Figure 3. Logic & Set Theory Process. This discrete mathematics process visualization demonstrates boolean algebra, set operations, and proof techniques. The flowchart shows logical statement inputs and proof techniques, logic and set theory methods and algorithms, proof operations and calculations, intermediate results, and final logic and set theory analysis outputs.