Spaces:
Sleeping
Sleeping
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from paddleocr import PaddleOCR | |
| from PIL import Image | |
| from transformers import AutoTokenizer, LayoutLMForQuestionAnswering | |
| from transformers.pipelines.document_question_answering import apply_tesseract | |
| model_tag = "impira/layoutlm-document-qa" | |
| MODEL = LayoutLMForQuestionAnswering.from_pretrained(model_tag).eval() | |
| TOKENIZER = AutoTokenizer.from_pretrained(model_tag) | |
| OCR = PaddleOCR( | |
| use_angle_cls=True, | |
| lang="en", | |
| det_limit_side_len=10_000, | |
| det_db_score_mode="slow", | |
| enable_mlkdnn=True, | |
| ) | |
| PADDLE_OCR_LABEL = "PaddleOCR (en)" | |
| TESSERACT_LABEL = "Tesseract (HF default)" | |
| def predict(image: Image.Image, question: str, ocr_engine: str): | |
| image_np = np.array(image) | |
| if ocr_engine == PADDLE_OCR_LABEL: | |
| ocr_result = OCR.ocr(image_np)[0] | |
| words = [x[1][0] for x in ocr_result] | |
| boxes = np.asarray([x[0] for x in ocr_result]) # (n_boxes, 4, 2) | |
| for box in boxes: | |
| cv2.polylines(image_np, [box.reshape(-1, 1, 2).astype(int)], True, (0, 255, 255), 3) | |
| x1 = boxes[:, :, 0].min(1) * 1000 / image.width | |
| y1 = boxes[:, :, 1].min(1) * 1000 / image.height | |
| x2 = boxes[:, :, 0].max(1) * 1000 / image.width | |
| y2 = boxes[:, :, 1].max(1) * 1000 / image.height | |
| # (n_boxes, 4) in xyxy format | |
| boxes = np.stack([x1, y1, x2, y2], axis=1).astype(int) | |
| elif ocr_engine == TESSERACT_LABEL: | |
| words, boxes = apply_tesseract(image, None, "") | |
| for x1, y1, x2, y2 in boxes: | |
| x1 = int(x1 * image.width / 1000) | |
| y1 = int(y1 * image.height / 1000) | |
| x2 = int(x2 * image.width / 1000) | |
| y2 = int(y2 * image.height / 1000) | |
| cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 255), 3) | |
| else: | |
| raise ValueError(f"Unsupported ocr_engine={ocr_engine}") | |
| token_ids = TOKENIZER(question)["input_ids"] | |
| token_boxes = [[0] * 4] * (len(token_ids) - 1) + [[1000] * 4] | |
| n_question_tokens = len(token_ids) | |
| token_ids.append(TOKENIZER.sep_token_id) | |
| token_boxes.append([1000] * 4) | |
| for word, box in zip(words, boxes): | |
| new_ids = TOKENIZER(word, add_special_tokens=False)["input_ids"] | |
| token_ids.extend(new_ids) | |
| token_boxes.extend([box] * len(new_ids)) | |
| token_ids.append(TOKENIZER.sep_token_id) | |
| token_boxes.append([1000] * 4) | |
| with torch.inference_mode(): | |
| outputs = MODEL( | |
| input_ids=torch.tensor(token_ids).unsqueeze(0), | |
| bbox=torch.tensor(token_boxes).unsqueeze(0), | |
| ) | |
| start_scores = outputs.start_logits.squeeze(0).softmax(-1)[n_question_tokens:] | |
| end_scores = outputs.end_logits.squeeze(0).softmax(-1)[n_question_tokens:] | |
| span_scores = start_scores.view(-1, 1) * end_scores.view(1, -1) | |
| span_scores = torch.triu(span_scores) # don't allow start < end | |
| score, indices = span_scores.flatten().max(-1) | |
| start_idx = n_question_tokens + indices // span_scores.shape[1] | |
| end_idx = n_question_tokens + indices % span_scores.shape[1] | |
| answer = TOKENIZER.decode(token_ids[start_idx : end_idx + 1]) | |
| return answer, score, image_np | |
| gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Image(type="pil"), | |
| "text", | |
| gr.Radio([PADDLE_OCR_LABEL, TESSERACT_LABEL]), | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Answer"), | |
| gr.Number(label="Score"), | |
| gr.Image(label="OCR results"), | |
| ], | |
| examples=[ | |
| ["example_01.jpg", "When did the sample take place?", PADDLE_OCR_LABEL], | |
| ["example_02.jpg", "What is the ID number?", PADDLE_OCR_LABEL], | |
| ], | |
| ).launch(server_name="0.0.0.0", server_port=7860) | |