Spaces:
Runtime error
Runtime error
| from PIL import Image | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| # custom installation from this PR: https://github.com/huggingface/transformers/pull/34583 | |
| # !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers | |
| from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation | |
| # load DepthPro model, used as backbone | |
| config = DepthProConfig( | |
| patch_size=192, | |
| patch_embeddings_size=16, | |
| num_hidden_layers=12, | |
| intermediate_hook_ids=[11, 8, 7, 5], | |
| intermediate_feature_dims=[256, 256, 256, 256], | |
| scaled_images_ratios=[0.5, 1.0], | |
| scaled_images_overlap_ratios=[0.5, 0.25], | |
| scaled_images_feature_dims=[1024, 512], | |
| use_fov_model=False, | |
| ) | |
| depthpro_for_depth_estimation = DepthProForDepthEstimation(config) | |
| # create DepthPro for super resolution | |
| class DepthProForSuperResolution(torch.nn.Module): | |
| def __init__(self, depthpro_for_depth_estimation): | |
| super().__init__() | |
| self.depthpro_for_depth_estimation = depthpro_for_depth_estimation | |
| hidden_size = self.depthpro_for_depth_estimation.config.fusion_hidden_size | |
| self.image_head = torch.nn.Sequential( | |
| torch.nn.ConvTranspose2d( | |
| in_channels=config.num_channels, | |
| out_channels=hidden_size, | |
| kernel_size=4, stride=2, padding=1 | |
| ), | |
| torch.nn.ReLU(), | |
| ) | |
| self.head = torch.nn.Sequential( | |
| torch.nn.Conv2d( | |
| in_channels=hidden_size, | |
| out_channels=hidden_size, | |
| kernel_size=3, stride=1, padding=1 | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.ConvTranspose2d( | |
| in_channels=hidden_size, | |
| out_channels=hidden_size, | |
| kernel_size=4, stride=2, padding=1 | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d( | |
| in_channels=hidden_size, | |
| out_channels=self.depthpro_for_depth_estimation.config.num_channels, | |
| kernel_size=3, stride=1, padding=1 | |
| ), | |
| ) | |
| def forward(self, pixel_values): | |
| # x is the low resolution image | |
| x = pixel_values | |
| encoder_features = self.depthpro_for_depth_estimation.depth_pro(x).features | |
| fused_hidden_state = self.depthpro_for_depth_estimation.fusion_stage(encoder_features)[-1] | |
| x = self.image_head(x) | |
| x = torch.nn.functional.interpolate(x, size=fused_hidden_state.shape[2:]) | |
| x = x + fused_hidden_state | |
| x = self.head(x) | |
| return x | |
| # initialize the model | |
| model = DepthProForSuperResolution(depthpro_for_depth_estimation) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = model.to(device) | |
| # load weights | |
| weights_path = hf_hub_download(repo_id="geetu040/DepthPro_SR_4x_384p", filename="model_weights.pth") | |
| model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'))) | |
| # load image processor | |
| image_processor = DepthProImageProcessorFast( | |
| do_resize=True, | |
| size={"width": 384, "height": 384}, | |
| do_rescale=True, | |
| do_normalize=True | |
| ) | |
| # define crop function to ensure square image | |
| def crop_image(image): | |
| """ | |
| Crops the image from the center to make aspect ratio 1:1. | |
| """ | |
| width, height = image.size | |
| min_dim = min(width, height) | |
| left = (width - min_dim) // 2 | |
| top = (height - min_dim) // 2 | |
| right = left + min_dim | |
| bottom = top + min_dim | |
| image = image.crop((left, top, right, bottom)) | |
| return image | |
| def predict(image): | |
| # inference | |
| image = crop_image(image) | |
| image = image.resize((384, 384), Image.Resampling.BICUBIC) | |
| # prepare image for the model | |
| inputs = image_processor(images=image, return_tensors="pt") | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # convert tensors to PIL.Image | |
| output = outputs[0] # extract the first and only batch | |
| output = output.cpu() # unload from cuda if used | |
| output = torch.permute(output, (1, 2, 0)) # (C, H, W) -> (H, W, C) | |
| output = output * 0.5 + 0.5 # undo normalization | |
| output = output * 255. # undo scaling | |
| output = output.clip(0, 255.) # fix out of range | |
| output = output.numpy() # convert to numpy | |
| output = output.astype('uint8') # convert to PIL.Image compatible format | |
| output = Image.fromarray(output) # create PIL.Image object | |
| return output | |