Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import random
|
| 2 |
import os
|
| 3 |
import uuid
|
|
@@ -8,6 +9,14 @@ import spaces
|
|
| 8 |
import torch
|
| 9 |
from diffusers import DiffusionPipeline
|
| 10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Temporary fix to patch the gradio_client.utils module
|
| 13 |
import gradio_client.utils
|
|
@@ -25,13 +34,37 @@ SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
|
| 25 |
if not os.path.exists(SAVE_DIR):
|
| 26 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
pipeline =
|
| 35 |
|
| 36 |
MAX_SEED = np.iinfo(np.int32).max
|
| 37 |
MAX_IMAGE_SIZE = 1024
|
|
@@ -233,5 +266,12 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=Fa
|
|
| 233 |
outputs=[result, seed, generated_gallery],
|
| 234 |
)
|
| 235 |
|
|
|
|
| 236 |
demo.queue()
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
import random
|
| 3 |
import os
|
| 4 |
import uuid
|
|
|
|
| 9 |
import torch
|
| 10 |
from diffusers import DiffusionPipeline
|
| 11 |
from PIL import Image
|
| 12 |
+
import huggingface_hub
|
| 13 |
+
import requests
|
| 14 |
+
from tqdm.auto import tqdm
|
| 15 |
+
import time
|
| 16 |
+
|
| 17 |
+
# νμμμ κ° μ¦κ° μ€μ
|
| 18 |
+
huggingface_hub.constants.DEFAULT_ETAG_TIMEOUT = 30
|
| 19 |
+
huggingface_hub.constants.DEFAULT_DOWNLOAD_TIMEOUT = 120
|
| 20 |
|
| 21 |
# Temporary fix to patch the gradio_client.utils module
|
| 22 |
import gradio_client.utils
|
|
|
|
| 34 |
if not os.path.exists(SAVE_DIR):
|
| 35 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 36 |
|
| 37 |
+
# λͺ¨λΈ λ‘λ© ν¨μ - μ¬μλ λ‘μ§ μΆκ°
|
| 38 |
+
def load_model_with_retry(max_retries=5):
|
| 39 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 40 |
+
repo_id = "black-forest-labs/FLUX.1-dev"
|
| 41 |
+
adapter_id = "openfree/flux-chatgpt-ghibli-lora"
|
| 42 |
+
|
| 43 |
+
for attempt in range(max_retries):
|
| 44 |
+
try:
|
| 45 |
+
print(f"Loading model attempt {attempt+1}/{max_retries}...")
|
| 46 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 47 |
+
repo_id,
|
| 48 |
+
torch_dtype=torch.bfloat16,
|
| 49 |
+
use_safetensors=True,
|
| 50 |
+
resume_download=True
|
| 51 |
+
)
|
| 52 |
+
print("Model loaded successfully, loading LoRA weights...")
|
| 53 |
+
pipeline.load_lora_weights(adapter_id)
|
| 54 |
+
pipeline = pipeline.to(device)
|
| 55 |
+
print("Pipeline ready!")
|
| 56 |
+
return pipeline, device
|
| 57 |
+
except (requests.exceptions.ReadTimeout, requests.exceptions.ConnectionError) as e:
|
| 58 |
+
if attempt < max_retries - 1:
|
| 59 |
+
wait_time = 10 * (attempt + 1) # μ μ§μ μΌλ‘ λκΈ° μκ° μ¦κ°
|
| 60 |
+
print(f"Download timed out or connection error: {e}. Retrying in {wait_time} seconds...")
|
| 61 |
+
time.sleep(wait_time)
|
| 62 |
+
else:
|
| 63 |
+
raise Exception(f"Failed to download model after {max_retries} attempts: {e}")
|
| 64 |
|
| 65 |
+
# λͺ¨λΈ λ‘λ μμ
|
| 66 |
+
print("Starting model loading process...")
|
| 67 |
+
pipeline, device = load_model_with_retry()
|
| 68 |
|
| 69 |
MAX_SEED = np.iinfo(np.int32).max
|
| 70 |
MAX_IMAGE_SIZE = 1024
|
|
|
|
| 266 |
outputs=[result, seed, generated_gallery],
|
| 267 |
)
|
| 268 |
|
| 269 |
+
# Launch with explicit host and port
|
| 270 |
demo.queue()
|
| 271 |
+
try:
|
| 272 |
+
demo.launch(share=False)
|
| 273 |
+
except Exception as e:
|
| 274 |
+
print(f"Error during launch: {e}")
|
| 275 |
+
# μλ¬ λ°μ μ, κ°μνλ λ²μ μΌλ‘ μ¬μλ
|
| 276 |
+
print("Retrying with simplified launch...")
|
| 277 |
+
demo.launch(share=False, ssl_verify=False)
|