Spaces:
Runtime error
Runtime error
Create utils/t2i.py
Browse files- utils/t2i.py +67 -0
utils/t2i.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import argparse
|
| 4 |
+
import os
|
| 5 |
+
import datetime
|
| 6 |
+
from diffusers import FluxPipeline
|
| 7 |
+
from lib_layerdiffuse.pipeline_flux_img2img import FluxImg2ImgPipeline
|
| 8 |
+
from lib_layerdiffuse.vae import TransparentVAE, pad_rgb
|
| 9 |
+
import numpy as np
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from safetensors.torch import load_file
|
| 12 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 13 |
+
import spaces
|
| 14 |
+
|
| 15 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 16 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
|
| 18 |
+
def seed_everything(seed: int) -> torch.Generator:
|
| 19 |
+
torch.manual_seed(seed)
|
| 20 |
+
torch.cuda.manual_seed_all(seed)
|
| 21 |
+
np.random.seed(seed)
|
| 22 |
+
generator = torch.Generator()
|
| 23 |
+
generator.manual_seed(seed)
|
| 24 |
+
return generator
|
| 25 |
+
|
| 26 |
+
t2i_pipe = FluxPipeline.from_pretrained(
|
| 27 |
+
"black-forest-labs/FLUX.1-dev",
|
| 28 |
+
torch_dtype=torch.bfloat16,
|
| 29 |
+
use_auth_token=HF_TOKEN
|
| 30 |
+
).to(device)
|
| 31 |
+
|
| 32 |
+
trans_vae = TransparentVAE(t2i_pipe.vae, t2i_pipe.vae.dtype)
|
| 33 |
+
trans_vae.load_state_dict(torch.load("./models/TransparentVAE.pth"), strict=False)
|
| 34 |
+
trans_vae.to(device)
|
| 35 |
+
|
| 36 |
+
@spaces.GPU(duration=75)
|
| 37 |
+
def t2i_gen(
|
| 38 |
+
prompt: str,
|
| 39 |
+
# negative_prompt: str = None,
|
| 40 |
+
seed: int = 1111,
|
| 41 |
+
width: int = 1024,
|
| 42 |
+
height: int = 1024,
|
| 43 |
+
guidance_scale: float = 3.5,
|
| 44 |
+
num_inference_steps: int = 50,
|
| 45 |
+
):
|
| 46 |
+
t2i_pipe.load_lora_weights("RedAIGC/Flux-version-LayerDiffuse", weight_name="layerlora.safetensors")
|
| 47 |
+
latents = t2i_pipe(
|
| 48 |
+
prompt=prompt,
|
| 49 |
+
height=height,
|
| 50 |
+
width=width,
|
| 51 |
+
num_inference_steps=num_inference_steps,
|
| 52 |
+
output_type="latent",
|
| 53 |
+
generator=seed_everything(seed),
|
| 54 |
+
guidance_scale=guidance_scale,
|
| 55 |
+
).images
|
| 56 |
+
|
| 57 |
+
latents = t2i_pipe._unpack_latents(latents, height, width, t2i_pipe.vae_scale_factor)
|
| 58 |
+
latents = (latents / t2i_pipe.vae.config.scaling_factor) + t2i_pipe.vae.config.shift_factor
|
| 59 |
+
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
original_x, x = trans_vae.decode(latents)
|
| 62 |
+
|
| 63 |
+
x = x.clamp(0, 1)
|
| 64 |
+
x = x.permute(0, 2, 3, 1)
|
| 65 |
+
img = Image.fromarray((x*255).float().cpu().numpy().astype(np.uint8)[0])
|
| 66 |
+
|
| 67 |
+
return img
|