Commit
·
7917eea
1
Parent(s):
642ebc0
someone help fk this image
Browse files- __pycache__/frames.cpython-310.pyc +0 -0
- frames.py +1 -11
- main.py +16 -4
__pycache__/frames.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/frames.cpython-310.pyc and b/__pycache__/frames.cpython-310.pyc differ
|
|
|
frames.py
CHANGED
|
@@ -40,17 +40,7 @@ def load_frames(path,size=(128,128)) -> tensor: # converts PIL image to tensor o
|
|
| 40 |
tensor = ToTensor()
|
| 41 |
resized_image=Resize(size)(image)
|
| 42 |
return tensor(resized_image).unsqueeze(0).to(device)
|
| 43 |
-
|
| 44 |
-
'''
|
| 45 |
-
Used to Save the Interpolated frame into the output directory.
|
| 46 |
-
:param Tensor:
|
| 47 |
-
:param output_path:
|
| 48 |
-
:return:
|
| 49 |
-
'''
|
| 50 |
-
transform=ToPILImage()
|
| 51 |
-
image=Tensor.squeeze(0).cpu()
|
| 52 |
-
image=transform(image)
|
| 53 |
-
image.save(output_path)
|
| 54 |
|
| 55 |
|
| 56 |
if __name__ == "__main__": # sets the __name__ variable to __main__ for this script
|
|
|
|
| 40 |
tensor = ToTensor()
|
| 41 |
resized_image=Resize(size)(image)
|
| 42 |
return tensor(resized_image).unsqueeze(0).to(device)
|
| 43 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
if __name__ == "__main__": # sets the __name__ variable to __main__ for this script
|
main.py
CHANGED
|
@@ -1,17 +1,29 @@
|
|
| 1 |
import torch
|
| 2 |
from model import UNet
|
| 3 |
-
from frames import load_frames
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision.transforms import transforms,ToTensor
|
| 6 |
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def time_steps(input_fps,output_fps)->list[float]:
|
| 9 |
if output_fps<=input_fps:
|
| 10 |
return []
|
| 11 |
k=output_fps//input_fps
|
| 12 |
n=k-1
|
| 13 |
return [i/n+1 for i in range(1,n+1)]
|
| 14 |
-
def expand_channels(tensor,target):
|
| 15 |
batch_size,current_channels,height,width=tensor.shape
|
| 16 |
if current_channels>=target:
|
| 17 |
return tensor
|
|
@@ -21,6 +33,7 @@ def expand_channels(tensor,target):
|
|
| 21 |
def interpolate(model_FC,model_AT,A,B,input_fps,output_fps)-> list[float]:
|
| 22 |
interval=time_steps(input_fps,output_fps)
|
| 23 |
input_tensor=torch.cat((A,B),dim=1)
|
|
|
|
| 24 |
with torch.no_grad():
|
| 25 |
flow_output=model_FC(input_tensor)
|
| 26 |
flow_output=expand_channels(flow_output,20)
|
|
@@ -44,8 +57,7 @@ def solve():
|
|
| 44 |
model_FC.eval()
|
| 45 |
A=load_frames("output/1.png")
|
| 46 |
B=load_frames("output/69.png")
|
| 47 |
-
interpolated_frames=interpolate(model_FC,model_AT,A,B,60
|
| 48 |
-
print(interpolated_frames)
|
| 49 |
for index,value in enumerate(interpolated_frames):
|
| 50 |
save_frames(value[:,:3,:,:],"Result_Test/image{}.png".format(index+1))
|
| 51 |
|
|
|
|
| 1 |
import torch
|
| 2 |
from model import UNet
|
| 3 |
+
from frames import load_frames
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision.transforms import transforms,ToTensor
|
| 6 |
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
+
def save_frames(tensor,out_path)->None:
|
| 9 |
+
image=normalize_frames(tensor)
|
| 10 |
+
image=Image.fromarray(image)
|
| 11 |
+
image.save(out_path)
|
| 12 |
+
def normalize_frames(tensor):
|
| 13 |
+
tensor=tensor.squeeze(0).detach().cpu()
|
| 14 |
+
min_val=tensor.min()
|
| 15 |
+
max_val=tensor.max()
|
| 16 |
+
tensor=(tensor-min_val)/(max_val-min_val)
|
| 17 |
+
tensor=(tensor*255).byte()
|
| 18 |
+
tensor=tensor.permute(1,2,0).numpy()
|
| 19 |
+
return tensor
|
| 20 |
def time_steps(input_fps,output_fps)->list[float]:
|
| 21 |
if output_fps<=input_fps:
|
| 22 |
return []
|
| 23 |
k=output_fps//input_fps
|
| 24 |
n=k-1
|
| 25 |
return [i/n+1 for i in range(1,n+1)]
|
| 26 |
+
def expand_channels(tensor,target): # adding filler channels
|
| 27 |
batch_size,current_channels,height,width=tensor.shape
|
| 28 |
if current_channels>=target:
|
| 29 |
return tensor
|
|
|
|
| 33 |
def interpolate(model_FC,model_AT,A,B,input_fps,output_fps)-> list[float]:
|
| 34 |
interval=time_steps(input_fps,output_fps)
|
| 35 |
input_tensor=torch.cat((A,B),dim=1)
|
| 36 |
+
print(interval)
|
| 37 |
with torch.no_grad():
|
| 38 |
flow_output=model_FC(input_tensor)
|
| 39 |
flow_output=expand_channels(flow_output,20)
|
|
|
|
| 57 |
model_FC.eval()
|
| 58 |
A=load_frames("output/1.png")
|
| 59 |
B=load_frames("output/69.png")
|
| 60 |
+
interpolated_frames=interpolate(model_FC,model_AT,A,B,30,60)
|
|
|
|
| 61 |
for index,value in enumerate(interpolated_frames):
|
| 62 |
save_frames(value[:,:3,:,:],"Result_Test/image{}.png".format(index+1))
|
| 63 |
|