Commit
·
816f401
1
Parent(s):
ddab39e
added Unet arch from original Repo
Browse files
frames.py
CHANGED
|
@@ -1,16 +1,28 @@
|
|
| 1 |
import cv2
|
| 2 |
import os
|
| 3 |
def extract_frames(url_path,output_dir):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
os.makedirs(output_dir, exist_ok=True)
|
| 5 |
frame_count=0
|
| 6 |
cap=cv2.VideoCapture(url_path)
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
if not ret:
|
| 10 |
break
|
| 11 |
frame_name=f"{frame_count}.png"
|
| 12 |
-
cv2.imwrite(os.path.join(output_dir, frame_name), frame)
|
| 13 |
frame_count+=1
|
|
|
|
| 14 |
cap.release()
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import cv2
|
| 2 |
import os
|
| 3 |
def extract_frames(url_path,output_dir):
|
| 4 |
+
'''
|
| 5 |
+
Acts as initial feed into the SuperSlomo Model
|
| 6 |
+
The Frames are stored in an output directory which is then loaded into the SuperSlomo Model.
|
| 7 |
+
:param url_path:
|
| 8 |
+
:param output_dir:
|
| 9 |
+
:return: None
|
| 10 |
+
'''
|
| 11 |
os.makedirs(output_dir, exist_ok=True)
|
| 12 |
frame_count=0
|
| 13 |
cap=cv2.VideoCapture(url_path)
|
| 14 |
+
total_frames=int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 15 |
+
fps=int(cap.get(cv2.CAP_PROP_FPS))
|
| 16 |
+
while cap.isOpened():
|
| 17 |
+
ret,frame=cap.read() # frame is a numpy array
|
| 18 |
if not ret:
|
| 19 |
break
|
| 20 |
frame_name=f"{frame_count}.png"
|
|
|
|
| 21 |
frame_count+=1
|
| 22 |
+
cv2.imwrite(os.path.join(output_dir, frame_name), frame)
|
| 23 |
cap.release()
|
| 24 |
+
def downsample(video_path,output_dir,target_fps):
|
| 25 |
+
pass
|
| 26 |
+
if __name__=="__main__": # sets the __name__ variable to __main__ for this script
|
| 27 |
+
|
| 28 |
+
extract_frames("Test.mp4","output")
|
info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
we need to decide how many frames our output video should have
|
| 2 |
+
now assume that the video is 1 min long at 30 fps.
|
| 3 |
+
k factor=fps_output/fps_input
|
| 4 |
+
k=90/30
|
| 5 |
+
k=3
|
| 6 |
+
# the output video will have T(total time(sec))x fps_output=60x90=5400
|
| 7 |
+
|
main.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
def solve():
|
| 3 |
+
checkpoint=torch.load("SuperSloMo.ckpt")
|
| 4 |
+
checkpoint.eval()
|
| 5 |
+
print(checkpoint)
|
| 6 |
+
def main():
|
| 7 |
+
solve()
|
| 8 |
+
if __name__=="__main__":
|
| 9 |
+
main()
|
model.py
ADDED
|
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision
|
| 3 |
+
import torchvision.transforms as transforms
|
| 4 |
+
import torch.optim as optim
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class down(nn.Module):
|
| 11 |
+
"""
|
| 12 |
+
A class for creating neural network blocks containing layers:
|
| 13 |
+
|
| 14 |
+
Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
|
| 15 |
+
|
| 16 |
+
This is used in the UNet Class to create a UNet like NN architecture.
|
| 17 |
+
|
| 18 |
+
...
|
| 19 |
+
|
| 20 |
+
Methods
|
| 21 |
+
-------
|
| 22 |
+
forward(x)
|
| 23 |
+
Returns output tensor after passing input `x` to the neural network
|
| 24 |
+
block.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def __init__(self, inChannels, outChannels, filterSize):
|
| 29 |
+
"""
|
| 30 |
+
Parameters
|
| 31 |
+
----------
|
| 32 |
+
inChannels : int
|
| 33 |
+
number of input channels for the first convolutional layer.
|
| 34 |
+
outChannels : int
|
| 35 |
+
number of output channels for the first convolutional layer.
|
| 36 |
+
This is also used as input and output channels for the
|
| 37 |
+
second convolutional layer.
|
| 38 |
+
filterSize : int
|
| 39 |
+
filter size for the convolution filter. input N would create
|
| 40 |
+
a N x N filter.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
super(down, self).__init__()
|
| 45 |
+
# Initialize convolutional layers.
|
| 46 |
+
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=1, padding=int((filterSize - 1) / 2))
|
| 47 |
+
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride=1, padding=int((filterSize - 1) / 2))
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
"""
|
| 51 |
+
Returns output tensor after passing input `x` to the neural network
|
| 52 |
+
block.
|
| 53 |
+
|
| 54 |
+
Parameters
|
| 55 |
+
----------
|
| 56 |
+
x : tensor
|
| 57 |
+
input to the NN block.
|
| 58 |
+
|
| 59 |
+
Returns
|
| 60 |
+
-------
|
| 61 |
+
tensor
|
| 62 |
+
output of the NN block.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Average pooling with kernel size 2 (2 x 2).
|
| 67 |
+
x = F.avg_pool2d(x, 2)
|
| 68 |
+
# Convolution + Leaky ReLU
|
| 69 |
+
x = F.leaky_relu(self.conv1(x), negative_slope = 0.1)
|
| 70 |
+
# Convolution + Leaky ReLU
|
| 71 |
+
x = F.leaky_relu(self.conv2(x), negative_slope = 0.1)
|
| 72 |
+
return x
|
| 73 |
+
|
| 74 |
+
class up(nn.Module):
|
| 75 |
+
"""
|
| 76 |
+
A class for creating neural network blocks containing layers:
|
| 77 |
+
|
| 78 |
+
Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
|
| 79 |
+
|
| 80 |
+
This is used in the UNet Class to create a UNet like NN architecture.
|
| 81 |
+
|
| 82 |
+
...
|
| 83 |
+
|
| 84 |
+
Methods
|
| 85 |
+
-------
|
| 86 |
+
forward(x, skpCn)
|
| 87 |
+
Returns output tensor after passing input `x` to the neural network
|
| 88 |
+
block.
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def __init__(self, inChannels, outChannels):
|
| 93 |
+
"""
|
| 94 |
+
Parameters
|
| 95 |
+
----------
|
| 96 |
+
inChannels : int
|
| 97 |
+
number of input channels for the first convolutional layer.
|
| 98 |
+
outChannels : int
|
| 99 |
+
number of output channels for the first convolutional layer.
|
| 100 |
+
This is also used for setting input and output channels for
|
| 101 |
+
the second convolutional layer.
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
super(up, self).__init__()
|
| 106 |
+
# Initialize convolutional layers.
|
| 107 |
+
self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1)
|
| 108 |
+
# (2 * outChannels) is used for accommodating skip connection.
|
| 109 |
+
self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1, padding=1)
|
| 110 |
+
|
| 111 |
+
def forward(self, x, skpCn):
|
| 112 |
+
"""
|
| 113 |
+
Returns output tensor after passing input `x` to the neural network
|
| 114 |
+
block.
|
| 115 |
+
|
| 116 |
+
Parameters
|
| 117 |
+
----------
|
| 118 |
+
x : tensor
|
| 119 |
+
input to the NN block.
|
| 120 |
+
skpCn : tensor
|
| 121 |
+
skip connection input to the NN block.
|
| 122 |
+
|
| 123 |
+
Returns
|
| 124 |
+
-------
|
| 125 |
+
tensor
|
| 126 |
+
output of the NN block.
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
# Bilinear interpolation with scaling 2.
|
| 130 |
+
x = F.interpolate(x, scale_factor=2, mode='bilinear')
|
| 131 |
+
# Convolution + Leaky ReLU
|
| 132 |
+
x = F.leaky_relu(self.conv1(x), negative_slope = 0.1)
|
| 133 |
+
# Convolution + Leaky ReLU on (`x`, `skpCn`)
|
| 134 |
+
x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)), negative_slope = 0.1)
|
| 135 |
+
return x
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class UNet(nn.Module):
|
| 140 |
+
"""
|
| 141 |
+
A class for creating UNet like architecture as specified by the
|
| 142 |
+
Super SloMo paper.
|
| 143 |
+
|
| 144 |
+
...
|
| 145 |
+
|
| 146 |
+
Methods
|
| 147 |
+
-------
|
| 148 |
+
forward(x)
|
| 149 |
+
Returns output tensor after passing input `x` to the neural network
|
| 150 |
+
block.
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def __init__(self, inChannels, outChannels):
|
| 155 |
+
"""
|
| 156 |
+
Parameters
|
| 157 |
+
----------
|
| 158 |
+
inChannels : int
|
| 159 |
+
number of input channels for the UNet.
|
| 160 |
+
outChannels : int
|
| 161 |
+
number of output channels for the UNet.
|
| 162 |
+
"""
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
super(UNet, self).__init__()
|
| 166 |
+
# Initialize neural network blocks.
|
| 167 |
+
self.conv1 = nn.Conv2d(inChannels, 32, 7, stride=1, padding=3)
|
| 168 |
+
self.conv2 = nn.Conv2d(32, 32, 7, stride=1, padding=3)
|
| 169 |
+
self.down1 = down(32, 64, 5)
|
| 170 |
+
self.down2 = down(64, 128, 3)
|
| 171 |
+
self.down3 = down(128, 256, 3)
|
| 172 |
+
self.down4 = down(256, 512, 3)
|
| 173 |
+
self.down5 = down(512, 512, 3)
|
| 174 |
+
self.up1 = up(512, 512)
|
| 175 |
+
self.up2 = up(512, 256)
|
| 176 |
+
self.up3 = up(256, 128)
|
| 177 |
+
self.up4 = up(128, 64)
|
| 178 |
+
self.up5 = up(64, 32)
|
| 179 |
+
self.conv3 = nn.Conv2d(32, outChannels, 3, stride=1, padding=1)
|
| 180 |
+
|
| 181 |
+
def forward(self, x):
|
| 182 |
+
"""
|
| 183 |
+
Returns output tensor after passing input `x` to the neural network.
|
| 184 |
+
|
| 185 |
+
Parameters
|
| 186 |
+
----------
|
| 187 |
+
x : tensor
|
| 188 |
+
input to the UNet.
|
| 189 |
+
|
| 190 |
+
Returns
|
| 191 |
+
-------
|
| 192 |
+
tensor
|
| 193 |
+
output of the UNet.
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
x = F.leaky_relu(self.conv1(x), negative_slope = 0.1)
|
| 198 |
+
s1 = F.leaky_relu(self.conv2(x), negative_slope = 0.1)
|
| 199 |
+
s2 = self.down1(s1)
|
| 200 |
+
s3 = self.down2(s2)
|
| 201 |
+
s4 = self.down3(s3)
|
| 202 |
+
s5 = self.down4(s4)
|
| 203 |
+
x = self.down5(s5)
|
| 204 |
+
x = self.up1(x, s5)
|
| 205 |
+
x = self.up2(x, s4)
|
| 206 |
+
x = self.up3(x, s3)
|
| 207 |
+
x = self.up4(x, s2)
|
| 208 |
+
x = self.up5(x, s1)
|
| 209 |
+
x = F.leaky_relu(self.conv3(x), negative_slope = 0.1)
|
| 210 |
+
return x
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class backWarp(nn.Module):
|
| 214 |
+
"""
|
| 215 |
+
A class for creating a backwarping object.
|
| 216 |
+
|
| 217 |
+
This is used for backwarping to an image:
|
| 218 |
+
|
| 219 |
+
Given optical flow from frame I0 to I1 --> F_0_1 and frame I1,
|
| 220 |
+
it generates I0 <-- backwarp(F_0_1, I1).
|
| 221 |
+
|
| 222 |
+
...
|
| 223 |
+
|
| 224 |
+
Methods
|
| 225 |
+
-------
|
| 226 |
+
forward(x)
|
| 227 |
+
Returns output tensor after passing input `img` and `flow` to the backwarping
|
| 228 |
+
block.
|
| 229 |
+
"""
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def __init__(self, W, H, device):
|
| 233 |
+
"""
|
| 234 |
+
Parameters
|
| 235 |
+
----------
|
| 236 |
+
W : int
|
| 237 |
+
width of the image.
|
| 238 |
+
H : int
|
| 239 |
+
height of the image.
|
| 240 |
+
device : device
|
| 241 |
+
computation device (cpu/cuda).
|
| 242 |
+
"""
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
super(backWarp, self).__init__()
|
| 246 |
+
# create a grid
|
| 247 |
+
gridX, gridY = np.meshgrid(np.arange(W), np.arange(H))
|
| 248 |
+
self.W = W
|
| 249 |
+
self.H = H
|
| 250 |
+
self.gridX = torch.tensor(gridX, requires_grad=False, device=device)
|
| 251 |
+
self.gridY = torch.tensor(gridY, requires_grad=False, device=device)
|
| 252 |
+
|
| 253 |
+
def forward(self, img, flow):
|
| 254 |
+
"""
|
| 255 |
+
Returns output tensor after passing input `img` and `flow` to the backwarping
|
| 256 |
+
block.
|
| 257 |
+
I0 = backwarp(I1, F_0_1)
|
| 258 |
+
|
| 259 |
+
Parameters
|
| 260 |
+
----------
|
| 261 |
+
img : tensor
|
| 262 |
+
frame I1.
|
| 263 |
+
flow : tensor
|
| 264 |
+
optical flow from I0 and I1: F_0_1.
|
| 265 |
+
|
| 266 |
+
Returns
|
| 267 |
+
-------
|
| 268 |
+
tensor
|
| 269 |
+
frame I0.
|
| 270 |
+
"""
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# Extract horizontal and vertical flows.
|
| 274 |
+
u = flow[:, 0, :, :]
|
| 275 |
+
v = flow[:, 1, :, :]
|
| 276 |
+
x = self.gridX.unsqueeze(0).expand_as(u).float() + u
|
| 277 |
+
y = self.gridY.unsqueeze(0).expand_as(v).float() + v
|
| 278 |
+
# range -1 to 1
|
| 279 |
+
x = 2*(x/self.W - 0.5)
|
| 280 |
+
y = 2*(y/self.H - 0.5)
|
| 281 |
+
# stacking X and Y
|
| 282 |
+
grid = torch.stack((x,y), dim=3)
|
| 283 |
+
# Sample pixels using bilinear interpolation.
|
| 284 |
+
imgOut = torch.nn.functional.grid_sample(img, grid)
|
| 285 |
+
return imgOut
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
# Creating an array of `t` values for the 7 intermediate frames between
|
| 289 |
+
# reference frames I0 and I1.
|
| 290 |
+
t = np.linspace(0.125, 0.875, 7)
|
| 291 |
+
|
| 292 |
+
def getFlowCoeff (indices, device):
|
| 293 |
+
"""
|
| 294 |
+
Gets flow coefficients used for calculating intermediate optical
|
| 295 |
+
flows from optical flows between I0 and I1: F_0_1 and F_1_0.
|
| 296 |
+
|
| 297 |
+
F_t_0 = C00 x F_0_1 + C01 x F_1_0
|
| 298 |
+
F_t_1 = C10 x F_0_1 + C11 x F_1_0
|
| 299 |
+
|
| 300 |
+
where,
|
| 301 |
+
C00 = -(1 - t) x t
|
| 302 |
+
C01 = t x t
|
| 303 |
+
C10 = (1 - t) x (1 - t)
|
| 304 |
+
C11 = -t x (1 - t)
|
| 305 |
+
|
| 306 |
+
Parameters
|
| 307 |
+
----------
|
| 308 |
+
indices : tensor
|
| 309 |
+
indices corresponding to the intermediate frame positions
|
| 310 |
+
of all samples in the batch.
|
| 311 |
+
device : device
|
| 312 |
+
computation device (cpu/cuda).
|
| 313 |
+
|
| 314 |
+
Returns
|
| 315 |
+
-------
|
| 316 |
+
tensor
|
| 317 |
+
coefficients C00, C01, C10, C11.
|
| 318 |
+
"""
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
# Convert indices tensor to numpy array
|
| 322 |
+
ind = indices.detach().numpy()
|
| 323 |
+
C11 = C00 = - (1 - (t[ind])) * (t[ind])
|
| 324 |
+
C01 = (t[ind]) * (t[ind])
|
| 325 |
+
C10 = (1 - (t[ind])) * (1 - (t[ind]))
|
| 326 |
+
return torch.Tensor(C00)[None, None, None, :].permute(3, 0, 1, 2).to(device), torch.Tensor(C01)[None, None, None, :].permute(3, 0, 1, 2).to(device), torch.Tensor(C10)[None, None, None, :].permute(3, 0, 1, 2).to(device), torch.Tensor(C11)[None, None, None, :].permute(3, 0, 1, 2).to(device)
|
| 327 |
+
|
| 328 |
+
def getWarpCoeff (indices, device):
|
| 329 |
+
"""
|
| 330 |
+
Gets coefficients used for calculating final intermediate
|
| 331 |
+
frame `It_gen` from backwarped images using flows F_t_0 and F_t_1.
|
| 332 |
+
|
| 333 |
+
It_gen = (C0 x V_t_0 x g_I_0_F_t_0 + C1 x V_t_1 x g_I_1_F_t_1) / (C0 x V_t_0 + C1 x V_t_1)
|
| 334 |
+
|
| 335 |
+
where,
|
| 336 |
+
C0 = 1 - t
|
| 337 |
+
C1 = t
|
| 338 |
+
|
| 339 |
+
V_t_0, V_t_1 --> visibility maps
|
| 340 |
+
g_I_0_F_t_0, g_I_1_F_t_1 --> backwarped intermediate frames
|
| 341 |
+
|
| 342 |
+
Parameters
|
| 343 |
+
----------
|
| 344 |
+
indices : tensor
|
| 345 |
+
indices corresponding to the intermediate frame positions
|
| 346 |
+
of all samples in the batch.
|
| 347 |
+
device : device
|
| 348 |
+
computation device (cpu/cuda).
|
| 349 |
+
|
| 350 |
+
Returns
|
| 351 |
+
-------
|
| 352 |
+
tensor
|
| 353 |
+
coefficients C0 and C1.
|
| 354 |
+
"""
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
# Convert indices tensor to numpy array
|
| 358 |
+
ind = indices.detach().numpy()
|
| 359 |
+
C0 = 1 - t[ind]
|
| 360 |
+
C1 = t[ind]
|
| 361 |
+
return torch.Tensor(C0)[None, None, None, :].permute(3, 0, 1, 2).to(device), torch.Tensor(C1)[None, None, None, :].permute(3, 0, 1, 2).to(device)
|