Spaces:
Paused
Paused
| import os | |
| import uuid | |
| import gradio as gr | |
| import spaces | |
| from clip_slider_pipeline import CLIPSliderFlux | |
| from diffusers import FluxPipeline, AutoencoderTiny | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| from PIL import Image | |
| from diffusers.utils import load_image | |
| from diffusers.utils import export_to_video | |
| import random | |
| from transformers import pipeline | |
| # Translation model load | |
| translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") | |
| # English menu labels | |
| english_labels = { | |
| "Prompt": "Prompt", | |
| "1st direction to steer": "1st Direction", | |
| "2nd direction to steer": "2nd Direction", | |
| "Strength": "Strength", | |
| "Generate directions": "Generate Directions", | |
| "Generated Images": "Generated Images", | |
| "From 1st to 2nd direction": "From 1st to 2nd Direction", | |
| "Strip": "Image Strip", | |
| "Looping video": "Looping Video", | |
| "Advanced options": "Advanced Options", | |
| "Num of intermediate images": "Number of Intermediate Images", | |
| "Num iterations for clip directions": "Number of CLIP Direction Iterations", | |
| "Num inference steps": "Number of Inference Steps", | |
| "Guidance scale": "Guidance Scale", | |
| "Randomize seed": "Randomize Seed", | |
| "Seed": "Seed" | |
| } | |
| # load pipelines | |
| base_model = "black-forest-labs/FLUX.1-schnell" | |
| taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") | |
| pipe = FluxPipeline.from_pretrained(base_model, | |
| vae=taef1, | |
| torch_dtype=torch.bfloat16) | |
| pipe.transformer.to(memory_format=torch.channels_last) | |
| clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) | |
| MAX_SEED = 2**32-1 | |
| def save_images_with_unique_filenames(image_list, save_directory): | |
| if not os.path.exists(save_directory): | |
| os.makedirs(save_directory) | |
| paths = [] | |
| for image in image_list: | |
| unique_filename = f"{uuid.uuid4()}.png" | |
| file_path = os.path.join(save_directory, unique_filename) | |
| image.save(file_path) | |
| paths.append(file_path) | |
| return paths | |
| def convert_to_centered_scale(num): | |
| if num % 2 == 0: # even | |
| start = -(num // 2 - 1) | |
| end = num // 2 | |
| else: # odd | |
| start = -(num // 2) | |
| end = num // 2 | |
| return tuple(range(start, end + 1)) | |
| def translate_if_korean(text): | |
| if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text): | |
| return translator(text)[0]['translation_text'] | |
| return text | |
| def generate(prompt, | |
| concept_1, | |
| concept_2, | |
| scale, | |
| randomize_seed=True, | |
| seed=42, | |
| recalc_directions=True, | |
| iterations=200, | |
| steps=3, | |
| interm_steps=33, | |
| guidance_scale=3.5, | |
| x_concept_1="", x_concept_2="", | |
| avg_diff_x=None, | |
| total_images=[], | |
| gradio_progress=gr.Progress() | |
| ): | |
| # Translate prompt and concepts if Korean | |
| prompt = translate_if_korean(prompt) | |
| concept_1 = translate_if_korean(concept_1) | |
| concept_2 = translate_if_korean(concept_2) | |
| print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}") | |
| slider_x = [concept_2, concept_1] | |
| # check if avg diff for directions need to be re-calculated | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: | |
| gradio_progress(0, desc="Calculating directions...") | |
| avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) | |
| x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
| images = [] | |
| high_scale = scale | |
| low_scale = -1 * scale | |
| for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"): | |
| cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1) | |
| image = clip_slider.generate(prompt, | |
| width=768, | |
| height=768, | |
| guidance_scale=guidance_scale, | |
| scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) | |
| images.append(image) | |
| canvas = Image.new('RGB', (256*interm_steps, 256)) | |
| for i, im in enumerate(images): | |
| canvas.paste(im.resize((256,256)), (256 * i, 0)) | |
| comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" | |
| scale_total = convert_to_centered_scale(interm_steps) | |
| scale_min = scale_total[0] | |
| scale_max = scale_total[-1] | |
| scale_middle = scale_total.index(0) | |
| post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) | |
| avg_diff_x = avg_diff.cpu() | |
| video_path = f"{uuid.uuid4()}.mp4" | |
| print(video_path) | |
| return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed | |
| def update_pre_generated_images(slider_value, total_images): | |
| number_images = 0 | |
| if total_images: | |
| number_images = len(total_images) | |
| if(number_images > 0): | |
| scale_tuple = convert_to_centered_scale(number_images) | |
| return total_images[scale_tuple.index(slider_value)][0] | |
| else: | |
| return None | |
| def reset_recalc_directions(): | |
| return True | |
| # Updated examples with English text | |
| examples = [ | |
| ["flower in mountain", "spring", "winter", 1.5], | |
| ["a tomato", "super fresh", "rotten", 2.5], | |
| ["여자", "아기", "노인", 2.5] | |
| ] | |
| css = """ | |
| footer { | |
| visibility: hidden; | |
| } | |
| .container { | |
| max-width: 1200px; | |
| margin: auto; | |
| } | |
| .main-panel { | |
| background-color: rgba(255, 255, 255, 0.05); | |
| border-radius: 12px; | |
| padding: 20px; | |
| margin-bottom: 20px; | |
| } | |
| .controls-panel { | |
| background-color: rgba(255, 255, 255, 0.02); | |
| border-radius: 8px; | |
| padding: 16px; | |
| } | |
| .image-display { | |
| min-height: 400px; | |
| display: flex; | |
| flex-direction: column; | |
| justify-content: center; | |
| } | |
| .slider-container { | |
| padding: 10px 0; | |
| } | |
| .advanced-panel { | |
| margin-top: 20px; | |
| border-top: 1px solid rgba(255, 255, 255, 0.1); | |
| padding-top: 20px; | |
| } | |
| """ | |
| with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: | |
| x_concept_1 = gr.State("") | |
| x_concept_2 = gr.State("") | |
| total_images = gr.State([]) | |
| avg_diff_x = gr.State() | |
| recalc_directions = gr.State(False) | |
| with gr.Row(elem_classes="container"): | |
| # Left Column - Controls | |
| with gr.Column(scale=4): | |
| with gr.Group(elem_classes="main-panel"): | |
| gr.Markdown("### Image Generation Controls") | |
| with gr.Group(elem_classes="controls-panel"): | |
| prompt = gr.Textbox( | |
| label=english_labels["Prompt"], | |
| info="Enter the description", | |
| placeholder="A dog in the park", | |
| lines=2 | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| concept_1 = gr.Textbox( | |
| label=english_labels["1st direction to steer"], | |
| info="Initial state", | |
| placeholder="winter" | |
| ) | |
| with gr.Column(scale=1): | |
| concept_2 = gr.Textbox( | |
| label=english_labels["2nd direction to steer"], | |
| info="Final state", | |
| placeholder="summer" | |
| ) | |
| with gr.Row(elem_classes="slider-container"): | |
| x = gr.Slider( | |
| minimum=0, | |
| value=1.75, | |
| step=0.1, | |
| maximum=4.0, | |
| label=english_labels["Strength"], | |
| info="Maximum strength for each direction (above 2.5 may be unstable)" | |
| ) | |
| submit = gr.Button(english_labels["Generate directions"], size="lg", variant="primary") | |
| # Advanced Options Panel | |
| with gr.Accordion(label=english_labels["Advanced options"], open=False, elem_classes="advanced-panel"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| interm_steps = gr.Slider( | |
| label=english_labels["Num of intermediate images"], | |
| minimum=3, | |
| value=7, | |
| maximum=65, | |
| step=2 | |
| ) | |
| with gr.Column(scale=1): | |
| guidance_scale = gr.Slider( | |
| label=english_labels["Guidance scale"], | |
| minimum=0.1, | |
| maximum=10.0, | |
| step=0.1, | |
| value=3.5 | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| iterations = gr.Slider( | |
| label=english_labels["Num iterations for clip directions"], | |
| minimum=0, | |
| value=200, | |
| maximum=400, | |
| step=1 | |
| ) | |
| with gr.Column(scale=1): | |
| steps = gr.Slider( | |
| label=english_labels["Num inference steps"], | |
| minimum=1, | |
| value=3, | |
| maximum=4, | |
| step=1 | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| randomize_seed = gr.Checkbox( | |
| True, | |
| label=english_labels["Randomize seed"] | |
| ) | |
| with gr.Column(scale=1): | |
| seed = gr.Slider( | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| label=english_labels["Seed"], | |
| interactive=True, | |
| randomize=True | |
| ) | |
| # Right Column - Output | |
| with gr.Column(scale=6): | |
| with gr.Group(elem_classes="main-panel"): | |
| gr.Markdown("### Generated Results") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| image_seq = gr.Image( | |
| label=english_labels["Strip"], | |
| elem_id="strip", | |
| height=100 | |
| ) | |
| with gr.Column(scale=2): | |
| output_image = gr.Video( | |
| label=english_labels["Looping video"], | |
| elem_id="video", | |
| loop=True, | |
| autoplay=True, | |
| height=100 | |
| ) | |
| with gr.Row(): # Moved this block to be after the video | |
| with gr.Column(): | |
| post_generation_image = gr.Image( | |
| label=english_labels["Generated Images"], | |
| type="filepath", | |
| elem_id="interactive", | |
| elem_classes="image-display" | |
| ) | |
| post_generation_slider = gr.Slider( | |
| minimum=-10, | |
| maximum=10, | |
| value=0, | |
| step=1, | |
| label=english_labels["From 1st to 2nd direction"] | |
| ) | |
| # Examples Section | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[prompt, concept_1, concept_2, x], | |
| fn=generate, | |
| outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, | |
| post_generation_image, post_generation_slider, seed], | |
| cache_examples="lazy" | |
| ) | |
| # Event Handlers | |
| submit.click( | |
| fn=generate, | |
| inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, | |
| iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, | |
| avg_diff_x, total_images], | |
| outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, | |
| post_generation_image, post_generation_slider, seed] | |
| ) | |
| iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions]) | |
| seed.change(fn=reset_recalc_directions, outputs=[recalc_directions]) | |
| post_generation_slider.change( | |
| fn=update_pre_generated_images, | |
| inputs=[post_generation_slider, total_images], | |
| outputs=[post_generation_image], | |
| queue=False, | |
| show_progress="hidden", | |
| concurrency_limit=None | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |