Spaces:
Paused
Paused
support flux (#1)
Browse files- support flux (38137231e4da487d1d952256e68a109b7bc006cf)
- flux slider (325d5c60fdce05cac741dfba18eb2768296cea98)
- Update app.py (058c742984f5b9ca82b83f1eca0da8157c6aa320)
- app.py +0 -0
- clip_slider_pipeline.py +171 -75
app.py
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
clip_slider_pipeline.py
CHANGED
|
@@ -4,26 +4,23 @@ import random
|
|
| 4 |
from tqdm import tqdm
|
| 5 |
from constants import SUBJECTS, MEDIUMS
|
| 6 |
from PIL import Image
|
| 7 |
-
|
| 8 |
class CLIPSlider:
|
| 9 |
def __init__(
|
| 10 |
self,
|
| 11 |
sd_pipe,
|
| 12 |
device: torch.device,
|
| 13 |
-
target_word: str
|
| 14 |
-
opposite: str
|
| 15 |
target_word_2nd: str = "",
|
| 16 |
opposite_2nd: str = "",
|
| 17 |
iterations: int = 300,
|
| 18 |
):
|
| 19 |
|
| 20 |
self.device = device
|
| 21 |
-
self.pipe = sd_pipe.to(self.device
|
| 22 |
self.iterations = iterations
|
| 23 |
-
|
| 24 |
-
self.avg_diff = self.find_latent_direction(target_word, opposite)
|
| 25 |
-
else:
|
| 26 |
-
self.avg_diff = None
|
| 27 |
if target_word_2nd != "" or opposite_2nd != "":
|
| 28 |
self.avg_diff_2nd = self.find_latent_direction(target_word_2nd, opposite_2nd)
|
| 29 |
else:
|
|
@@ -32,21 +29,17 @@ class CLIPSlider:
|
|
| 32 |
|
| 33 |
def find_latent_direction(self,
|
| 34 |
target_word:str,
|
| 35 |
-
opposite:str
|
| 36 |
-
num_iterations: int = None):
|
| 37 |
|
| 38 |
# lets identify a latent direction by taking differences between opposites
|
| 39 |
# target_word = "happy"
|
| 40 |
# opposite = "sad"
|
| 41 |
|
| 42 |
-
|
| 43 |
-
iterations = num_iterations
|
| 44 |
-
else:
|
| 45 |
-
iterations = self.iterations
|
| 46 |
with torch.no_grad():
|
| 47 |
positives = []
|
| 48 |
negatives = []
|
| 49 |
-
for i in tqdm(range(iterations)):
|
| 50 |
medium = random.choice(MEDIUMS)
|
| 51 |
subject = random.choice(SUBJECTS)
|
| 52 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
@@ -77,8 +70,6 @@ class CLIPSlider:
|
|
| 77 |
only_pooler = False,
|
| 78 |
normalize_scales = False, # whether to normalize the scales when avg_diff_2nd is not None
|
| 79 |
correlation_weight_factor = 1.0,
|
| 80 |
-
avg_diff = None,
|
| 81 |
-
avg_diff_2nd = None,
|
| 82 |
**pipeline_kwargs
|
| 83 |
):
|
| 84 |
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
|
@@ -89,14 +80,14 @@ class CLIPSlider:
|
|
| 89 |
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 90 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
| 91 |
|
| 92 |
-
if avg_diff_2nd and normalize_scales:
|
| 93 |
denominator = abs(scale) + abs(scale_2nd)
|
| 94 |
scale = scale / denominator
|
| 95 |
scale_2nd = scale_2nd / denominator
|
| 96 |
if only_pooler:
|
| 97 |
-
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + avg_diff * scale
|
| 98 |
-
if avg_diff_2nd:
|
| 99 |
-
prompt_embeds[:, toks.argmax()] += avg_diff_2nd * scale_2nd
|
| 100 |
else:
|
| 101 |
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
|
| 102 |
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
|
@@ -108,15 +99,15 @@ class CLIPSlider:
|
|
| 108 |
|
| 109 |
# weights = torch.sigmoid((weights-0.5)*7)
|
| 110 |
prompt_embeds = prompt_embeds + (
|
| 111 |
-
weights * avg_diff[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
|
| 112 |
-
if avg_diff_2nd:
|
| 113 |
-
prompt_embeds += weights * avg_diff_2nd[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd
|
| 114 |
|
| 115 |
|
| 116 |
torch.manual_seed(seed)
|
| 117 |
-
|
| 118 |
|
| 119 |
-
return
|
| 120 |
|
| 121 |
def spectrum(self,
|
| 122 |
prompt="a photo of a house",
|
|
@@ -149,23 +140,19 @@ class CLIPSliderXL(CLIPSlider):
|
|
| 149 |
|
| 150 |
def find_latent_direction(self,
|
| 151 |
target_word:str,
|
| 152 |
-
opposite:str
|
| 153 |
-
num_iterations: int = None):
|
| 154 |
|
| 155 |
# lets identify a latent direction by taking differences between opposites
|
| 156 |
# target_word = "happy"
|
| 157 |
# opposite = "sad"
|
| 158 |
-
|
| 159 |
-
iterations = num_iterations
|
| 160 |
-
else:
|
| 161 |
-
iterations = self.iterations
|
| 162 |
|
| 163 |
with torch.no_grad():
|
| 164 |
positives = []
|
| 165 |
negatives = []
|
| 166 |
positives2 = []
|
| 167 |
negatives2 = []
|
| 168 |
-
for i in tqdm(range(iterations)):
|
| 169 |
medium = random.choice(MEDIUMS)
|
| 170 |
subject = random.choice(SUBJECTS)
|
| 171 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
@@ -208,13 +195,11 @@ class CLIPSliderXL(CLIPSlider):
|
|
| 208 |
only_pooler = False,
|
| 209 |
normalize_scales = False,
|
| 210 |
correlation_weight_factor = 1.0,
|
| 211 |
-
avg_diff = None,
|
| 212 |
-
avg_diff_2nd = None,
|
| 213 |
**pipeline_kwargs
|
| 214 |
):
|
| 215 |
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
| 216 |
# if pooler token only [-4,4] work well
|
| 217 |
-
|
| 218 |
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
| 219 |
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
| 220 |
with torch.no_grad():
|
|
@@ -239,21 +224,20 @@ class CLIPSliderXL(CLIPSlider):
|
|
| 239 |
toks.to(text_encoder.device),
|
| 240 |
output_hidden_states=True,
|
| 241 |
)
|
| 242 |
-
|
| 243 |
# We are only ALWAYS interested in the pooled output of the final text encoder
|
| 244 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
| 245 |
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 246 |
-
|
| 247 |
-
if avg_diff_2nd and normalize_scales:
|
| 248 |
denominator = abs(scale) + abs(scale_2nd)
|
| 249 |
scale = scale / denominator
|
| 250 |
scale_2nd = scale_2nd / denominator
|
| 251 |
if only_pooler:
|
| 252 |
-
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + avg_diff[0] * scale
|
| 253 |
-
if avg_diff_2nd:
|
| 254 |
-
prompt_embeds[:, toks.argmax()] += avg_diff_2nd[0] * scale_2nd
|
| 255 |
else:
|
| 256 |
-
|
| 257 |
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
|
| 258 |
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
| 259 |
|
|
@@ -263,58 +247,49 @@ class CLIPSliderXL(CLIPSlider):
|
|
| 263 |
standard_weights = torch.ones_like(weights)
|
| 264 |
|
| 265 |
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 266 |
-
prompt_embeds = prompt_embeds + (weights * avg_diff[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
|
| 267 |
-
if avg_diff_2nd:
|
| 268 |
-
prompt_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd)
|
| 269 |
else:
|
| 270 |
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
|
| 271 |
|
| 272 |
standard_weights = torch.ones_like(weights)
|
| 273 |
|
| 274 |
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 275 |
-
prompt_embeds = prompt_embeds + (weights * avg_diff[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale)
|
| 276 |
-
if avg_diff_2nd:
|
| 277 |
-
prompt_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale_2nd)
|
| 278 |
|
| 279 |
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 280 |
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
| 281 |
prompt_embeds_list.append(prompt_embeds)
|
| 282 |
|
| 283 |
-
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
| 284 |
-
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
| 285 |
-
|
| 286 |
-
print("prompt_embeds", prompt_embeds.dtype)
|
| 287 |
-
print(f"generation time - before pipe: {end_time - start_time:.2f} ms")
|
| 288 |
torch.manual_seed(seed)
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
**pipeline_kwargs).images[0]
|
| 292 |
-
end_time = time.time()
|
| 293 |
-
print(f"generation time - pipe: {end_time - start_time:.2f} ms")
|
| 294 |
|
| 295 |
-
return
|
| 296 |
|
| 297 |
class CLIPSliderXL_inv(CLIPSlider):
|
| 298 |
|
| 299 |
def find_latent_direction(self,
|
| 300 |
target_word:str,
|
| 301 |
-
opposite:str
|
| 302 |
-
num_iterations: int = None):
|
| 303 |
|
| 304 |
# lets identify a latent direction by taking differences between opposites
|
| 305 |
# target_word = "happy"
|
| 306 |
# opposite = "sad"
|
| 307 |
-
|
| 308 |
-
iterations = num_iterations
|
| 309 |
-
else:
|
| 310 |
-
iterations = self.iterations
|
| 311 |
|
| 312 |
with torch.no_grad():
|
| 313 |
positives = []
|
| 314 |
negatives = []
|
| 315 |
positives2 = []
|
| 316 |
negatives2 = []
|
| 317 |
-
for i in tqdm(range(iterations)):
|
| 318 |
medium = random.choice(MEDIUMS)
|
| 319 |
subject = random.choice(SUBJECTS)
|
| 320 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
@@ -357,18 +332,139 @@ class CLIPSliderXL_inv(CLIPSlider):
|
|
| 357 |
only_pooler = False,
|
| 358 |
normalize_scales = False,
|
| 359 |
correlation_weight_factor = 1.0,
|
| 360 |
-
avg_diff=None,
|
| 361 |
-
avg_diff_2nd=None,
|
| 362 |
-
init_latents=None,
|
| 363 |
-
zs=None,
|
| 364 |
**pipeline_kwargs
|
| 365 |
):
|
| 366 |
|
| 367 |
with torch.no_grad():
|
| 368 |
torch.manual_seed(seed)
|
| 369 |
-
images = self.pipe(editing_prompt=prompt,
|
| 370 |
-
avg_diff=avg_diff
|
| 371 |
-
scale=scale,
|
| 372 |
**pipeline_kwargs).images
|
| 373 |
|
| 374 |
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from tqdm import tqdm
|
| 5 |
from constants import SUBJECTS, MEDIUMS
|
| 6 |
from PIL import Image
|
| 7 |
+
|
| 8 |
class CLIPSlider:
|
| 9 |
def __init__(
|
| 10 |
self,
|
| 11 |
sd_pipe,
|
| 12 |
device: torch.device,
|
| 13 |
+
target_word: str,
|
| 14 |
+
opposite: str,
|
| 15 |
target_word_2nd: str = "",
|
| 16 |
opposite_2nd: str = "",
|
| 17 |
iterations: int = 300,
|
| 18 |
):
|
| 19 |
|
| 20 |
self.device = device
|
| 21 |
+
self.pipe = sd_pipe.to(self.device)
|
| 22 |
self.iterations = iterations
|
| 23 |
+
self.avg_diff = self.find_latent_direction(target_word, opposite)
|
|
|
|
|
|
|
|
|
|
| 24 |
if target_word_2nd != "" or opposite_2nd != "":
|
| 25 |
self.avg_diff_2nd = self.find_latent_direction(target_word_2nd, opposite_2nd)
|
| 26 |
else:
|
|
|
|
| 29 |
|
| 30 |
def find_latent_direction(self,
|
| 31 |
target_word:str,
|
| 32 |
+
opposite:str):
|
|
|
|
| 33 |
|
| 34 |
# lets identify a latent direction by taking differences between opposites
|
| 35 |
# target_word = "happy"
|
| 36 |
# opposite = "sad"
|
| 37 |
|
| 38 |
+
|
|
|
|
|
|
|
|
|
|
| 39 |
with torch.no_grad():
|
| 40 |
positives = []
|
| 41 |
negatives = []
|
| 42 |
+
for i in tqdm(range(self.iterations)):
|
| 43 |
medium = random.choice(MEDIUMS)
|
| 44 |
subject = random.choice(SUBJECTS)
|
| 45 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
|
|
| 70 |
only_pooler = False,
|
| 71 |
normalize_scales = False, # whether to normalize the scales when avg_diff_2nd is not None
|
| 72 |
correlation_weight_factor = 1.0,
|
|
|
|
|
|
|
| 73 |
**pipeline_kwargs
|
| 74 |
):
|
| 75 |
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
|
|
|
| 80 |
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 81 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
| 82 |
|
| 83 |
+
if self.avg_diff_2nd and normalize_scales:
|
| 84 |
denominator = abs(scale) + abs(scale_2nd)
|
| 85 |
scale = scale / denominator
|
| 86 |
scale_2nd = scale_2nd / denominator
|
| 87 |
if only_pooler:
|
| 88 |
+
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff * scale
|
| 89 |
+
if self.avg_diff_2nd:
|
| 90 |
+
prompt_embeds[:, toks.argmax()] += self.avg_diff_2nd * scale_2nd
|
| 91 |
else:
|
| 92 |
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
|
| 93 |
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
|
|
|
| 99 |
|
| 100 |
# weights = torch.sigmoid((weights-0.5)*7)
|
| 101 |
prompt_embeds = prompt_embeds + (
|
| 102 |
+
weights * self.avg_diff[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
|
| 103 |
+
if self.avg_diff_2nd:
|
| 104 |
+
prompt_embeds += weights * self.avg_diff_2nd[None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd
|
| 105 |
|
| 106 |
|
| 107 |
torch.manual_seed(seed)
|
| 108 |
+
images = self.pipe(prompt_embeds=prompt_embeds, **pipeline_kwargs).images
|
| 109 |
|
| 110 |
+
return images
|
| 111 |
|
| 112 |
def spectrum(self,
|
| 113 |
prompt="a photo of a house",
|
|
|
|
| 140 |
|
| 141 |
def find_latent_direction(self,
|
| 142 |
target_word:str,
|
| 143 |
+
opposite:str):
|
|
|
|
| 144 |
|
| 145 |
# lets identify a latent direction by taking differences between opposites
|
| 146 |
# target_word = "happy"
|
| 147 |
# opposite = "sad"
|
| 148 |
+
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
with torch.no_grad():
|
| 151 |
positives = []
|
| 152 |
negatives = []
|
| 153 |
positives2 = []
|
| 154 |
negatives2 = []
|
| 155 |
+
for i in tqdm(range(self.iterations)):
|
| 156 |
medium = random.choice(MEDIUMS)
|
| 157 |
subject = random.choice(SUBJECTS)
|
| 158 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
|
|
| 195 |
only_pooler = False,
|
| 196 |
normalize_scales = False,
|
| 197 |
correlation_weight_factor = 1.0,
|
|
|
|
|
|
|
| 198 |
**pipeline_kwargs
|
| 199 |
):
|
| 200 |
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
| 201 |
# if pooler token only [-4,4] work well
|
| 202 |
+
|
| 203 |
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
| 204 |
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
| 205 |
with torch.no_grad():
|
|
|
|
| 224 |
toks.to(text_encoder.device),
|
| 225 |
output_hidden_states=True,
|
| 226 |
)
|
| 227 |
+
|
| 228 |
# We are only ALWAYS interested in the pooled output of the final text encoder
|
| 229 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 230 |
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 231 |
+
|
| 232 |
+
if self.avg_diff_2nd and normalize_scales:
|
| 233 |
denominator = abs(scale) + abs(scale_2nd)
|
| 234 |
scale = scale / denominator
|
| 235 |
scale_2nd = scale_2nd / denominator
|
| 236 |
if only_pooler:
|
| 237 |
+
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff[0] * scale
|
| 238 |
+
if self.avg_diff_2nd:
|
| 239 |
+
prompt_embeds[:, toks.argmax()] += self.avg_diff_2nd[0] * scale_2nd
|
| 240 |
else:
|
|
|
|
| 241 |
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
|
| 242 |
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
| 243 |
|
|
|
|
| 247 |
standard_weights = torch.ones_like(weights)
|
| 248 |
|
| 249 |
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 250 |
+
prompt_embeds = prompt_embeds + (weights * self.avg_diff[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale)
|
| 251 |
+
if self.avg_diff_2nd:
|
| 252 |
+
prompt_embeds += (weights * self.avg_diff_2nd[0][None, :].repeat(1, self.pipe.tokenizer.model_max_length, 1) * scale_2nd)
|
| 253 |
else:
|
| 254 |
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
|
| 255 |
|
| 256 |
standard_weights = torch.ones_like(weights)
|
| 257 |
|
| 258 |
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 259 |
+
prompt_embeds = prompt_embeds + (weights * self.avg_diff[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale)
|
| 260 |
+
if self.avg_diff_2nd:
|
| 261 |
+
prompt_embeds += (weights * self.avg_diff_2nd[1][None, :].repeat(1, self.pipe.tokenizer_2.model_max_length, 1) * scale_2nd)
|
| 262 |
|
| 263 |
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 264 |
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
| 265 |
prompt_embeds_list.append(prompt_embeds)
|
| 266 |
|
| 267 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
| 268 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
| 269 |
+
|
|
|
|
|
|
|
| 270 |
torch.manual_seed(seed)
|
| 271 |
+
images = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds,
|
| 272 |
+
**pipeline_kwargs).images
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
return images
|
| 275 |
|
| 276 |
class CLIPSliderXL_inv(CLIPSlider):
|
| 277 |
|
| 278 |
def find_latent_direction(self,
|
| 279 |
target_word:str,
|
| 280 |
+
opposite:str):
|
|
|
|
| 281 |
|
| 282 |
# lets identify a latent direction by taking differences between opposites
|
| 283 |
# target_word = "happy"
|
| 284 |
# opposite = "sad"
|
| 285 |
+
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
with torch.no_grad():
|
| 288 |
positives = []
|
| 289 |
negatives = []
|
| 290 |
positives2 = []
|
| 291 |
negatives2 = []
|
| 292 |
+
for i in tqdm(range(self.iterations)):
|
| 293 |
medium = random.choice(MEDIUMS)
|
| 294 |
subject = random.choice(SUBJECTS)
|
| 295 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
|
|
| 332 |
only_pooler = False,
|
| 333 |
normalize_scales = False,
|
| 334 |
correlation_weight_factor = 1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
**pipeline_kwargs
|
| 336 |
):
|
| 337 |
|
| 338 |
with torch.no_grad():
|
| 339 |
torch.manual_seed(seed)
|
| 340 |
+
images = self.pipe(editing_prompt=prompt,
|
| 341 |
+
avg_diff=self.avg_diff, avg_diff_2nd=self.avg_diff_2nd,
|
| 342 |
+
scale=scale, scale_2nd=scale_2nd,
|
| 343 |
**pipeline_kwargs).images
|
| 344 |
|
| 345 |
return images
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
class T5SliderFlux(CLIPSlider):
|
| 349 |
+
|
| 350 |
+
def find_latent_direction(self,
|
| 351 |
+
target_word:str,
|
| 352 |
+
opposite:str):
|
| 353 |
+
|
| 354 |
+
# lets identify a latent direction by taking differences between opposites
|
| 355 |
+
# target_word = "happy"
|
| 356 |
+
# opposite = "sad"
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
with torch.no_grad():
|
| 360 |
+
positives = []
|
| 361 |
+
negatives = []
|
| 362 |
+
for i in tqdm(range(self.iterations)):
|
| 363 |
+
medium = random.choice(MEDIUMS)
|
| 364 |
+
subject = random.choice(SUBJECTS)
|
| 365 |
+
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
| 366 |
+
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 367 |
+
|
| 368 |
+
pos_toks = self.pipe.tokenizer_2(pos_prompt,
|
| 369 |
+
return_tensors="pt",
|
| 370 |
+
padding="max_length",
|
| 371 |
+
truncation=True,
|
| 372 |
+
return_length=False,
|
| 373 |
+
return_overflowing_tokens=False,
|
| 374 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 375 |
+
neg_toks = self.pipe.tokenizer_2(neg_prompt,
|
| 376 |
+
return_tensors="pt",
|
| 377 |
+
padding="max_length",
|
| 378 |
+
truncation=True,
|
| 379 |
+
return_length=False,
|
| 380 |
+
return_overflowing_tokens=False,
|
| 381 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 382 |
+
pos = self.pipe.text_encoder_2(pos_toks, output_hidden_states=False)[0]
|
| 383 |
+
neg = self.pipe.text_encoder_2(neg_toks, output_hidden_states=False)[0]
|
| 384 |
+
positives.append(pos)
|
| 385 |
+
negatives.append(neg)
|
| 386 |
+
|
| 387 |
+
positives = torch.cat(positives, dim=0)
|
| 388 |
+
negatives = torch.cat(negatives, dim=0)
|
| 389 |
+
diffs = positives - negatives
|
| 390 |
+
avg_diff = diffs.mean(0, keepdim=True)
|
| 391 |
+
|
| 392 |
+
return avg_diff
|
| 393 |
+
|
| 394 |
+
def generate(self,
|
| 395 |
+
prompt = "a photo of a house",
|
| 396 |
+
scale = 2,
|
| 397 |
+
scale_2nd = 2,
|
| 398 |
+
seed = 15,
|
| 399 |
+
only_pooler = False,
|
| 400 |
+
normalize_scales = False,
|
| 401 |
+
correlation_weight_factor = 1.0,
|
| 402 |
+
**pipeline_kwargs
|
| 403 |
+
):
|
| 404 |
+
# if doing full sequence, [-0.3,0.3] work well, higher if correlation weighted is true
|
| 405 |
+
# if pooler token only [-4,4] work well
|
| 406 |
+
|
| 407 |
+
with torch.no_grad():
|
| 408 |
+
text_inputs = self.pipe.tokenizer(
|
| 409 |
+
prompt,
|
| 410 |
+
padding="max_length",
|
| 411 |
+
max_length=77,
|
| 412 |
+
truncation=True,
|
| 413 |
+
return_overflowing_tokens=False,
|
| 414 |
+
return_length=False,
|
| 415 |
+
return_tensors="pt",
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
text_input_ids = text_inputs.input_ids
|
| 419 |
+
prompt_embeds = self.pipe.text_encoder(text_input_ids.to(self.device), output_hidden_states=False)
|
| 420 |
+
|
| 421 |
+
# Use pooled output of CLIPTextModel
|
| 422 |
+
prompt_embeds = prompt_embeds.pooler_output
|
| 423 |
+
pooled_prompt_embeds = prompt_embeds.to(dtype=self.pipe.text_encoder.dtype, device=self.device)
|
| 424 |
+
|
| 425 |
+
# Use pooled output of CLIPTextModel
|
| 426 |
+
|
| 427 |
+
text_inputs = self.pipe.tokenizer_2(
|
| 428 |
+
prompt,
|
| 429 |
+
padding="max_length",
|
| 430 |
+
max_length=512,
|
| 431 |
+
truncation=True,
|
| 432 |
+
return_length=False,
|
| 433 |
+
return_overflowing_tokens=False,
|
| 434 |
+
return_tensors="pt",
|
| 435 |
+
)
|
| 436 |
+
toks = text_inputs.input_ids
|
| 437 |
+
prompt_embeds = self.pipe.text_encoder_2(toks.to(self.device), output_hidden_states=False)[0]
|
| 438 |
+
dtype = self.pipe.text_encoder_2.dtype
|
| 439 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=self.device)
|
| 440 |
+
print("1", prompt_embeds.shape)
|
| 441 |
+
if self.avg_diff_2nd and normalize_scales:
|
| 442 |
+
denominator = abs(scale) + abs(scale_2nd)
|
| 443 |
+
scale = scale / denominator
|
| 444 |
+
scale_2nd = scale_2nd / denominator
|
| 445 |
+
if only_pooler:
|
| 446 |
+
prompt_embeds[:, toks.argmax()] = prompt_embeds[:, toks.argmax()] + self.avg_diff * scale
|
| 447 |
+
if self.avg_diff_2nd:
|
| 448 |
+
prompt_embeds[:, toks.argmax()] += self.avg_diff_2nd * scale_2nd
|
| 449 |
+
else:
|
| 450 |
+
normed_prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True)
|
| 451 |
+
sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
|
| 452 |
+
|
| 453 |
+
weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, prompt_embeds.shape[2])
|
| 454 |
+
print("weights", weights.shape)
|
| 455 |
+
|
| 456 |
+
standard_weights = torch.ones_like(weights)
|
| 457 |
+
|
| 458 |
+
weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
|
| 459 |
+
prompt_embeds = prompt_embeds + (
|
| 460 |
+
weights * self.avg_diff * scale)
|
| 461 |
+
print("2", prompt_embeds.shape)
|
| 462 |
+
if self.avg_diff_2nd:
|
| 463 |
+
prompt_embeds += (
|
| 464 |
+
weights * self.avg_diff_2nd * scale_2nd)
|
| 465 |
+
|
| 466 |
+
torch.manual_seed(seed)
|
| 467 |
+
images = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds,
|
| 468 |
+
**pipeline_kwargs).images
|
| 469 |
+
|
| 470 |
+
return images
|