Spaces:
Paused
Paused
Update clip_slider_pipeline.py
Browse files- clip_slider_pipeline.py +11 -11
clip_slider_pipeline.py
CHANGED
|
@@ -48,9 +48,9 @@ class CLIPSlider:
|
|
| 48 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
| 49 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 50 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 51 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 52 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 53 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 54 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 55 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 56 |
positives.append(pos)
|
|
@@ -82,7 +82,7 @@ class CLIPSlider:
|
|
| 82 |
|
| 83 |
with torch.no_grad():
|
| 84 |
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 85 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 86 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
| 87 |
|
| 88 |
if avg_diff_2nd and normalize_scales:
|
|
@@ -164,18 +164,18 @@ class CLIPSliderXL(CLIPSlider):
|
|
| 164 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 165 |
|
| 166 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 167 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids
|
| 168 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 169 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids
|
| 170 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 171 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 172 |
positives.append(pos)
|
| 173 |
negatives.append(neg)
|
| 174 |
|
| 175 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 176 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids
|
| 177 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 178 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids
|
| 179 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 180 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 181 |
positives2.append(pos2)
|
|
@@ -303,18 +303,18 @@ class CLIPSlider3(CLIPSlider):
|
|
| 303 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 304 |
|
| 305 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 306 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 307 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 308 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
| 309 |
pos = self.pipe.text_encoder(pos_toks).text_embeds
|
| 310 |
neg = self.pipe.text_encoder(neg_toks).text_embeds
|
| 311 |
positives.append(pos)
|
| 312 |
negatives.append(neg)
|
| 313 |
|
| 314 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 315 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
| 316 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 317 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
| 318 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 319 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 320 |
positives2.append(pos2)
|
|
|
|
| 48 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
| 49 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 50 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 51 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 52 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 53 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 54 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 55 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 56 |
positives.append(pos)
|
|
|
|
| 82 |
|
| 83 |
with torch.no_grad():
|
| 84 |
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 85 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 86 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
| 87 |
|
| 88 |
if avg_diff_2nd and normalize_scales:
|
|
|
|
| 164 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 165 |
|
| 166 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 167 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 168 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 169 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 170 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
| 171 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
| 172 |
positives.append(pos)
|
| 173 |
negatives.append(neg)
|
| 174 |
|
| 175 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 176 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 177 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 178 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 179 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 180 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 181 |
positives2.append(pos2)
|
|
|
|
| 303 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
| 304 |
|
| 305 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 306 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 307 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 308 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
| 309 |
pos = self.pipe.text_encoder(pos_toks).text_embeds
|
| 310 |
neg = self.pipe.text_encoder(neg_toks).text_embeds
|
| 311 |
positives.append(pos)
|
| 312 |
negatives.append(neg)
|
| 313 |
|
| 314 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 315 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 316 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
| 317 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
| 318 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
| 319 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
| 320 |
positives2.append(pos2)
|