Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,21 +20,6 @@ pipe = FluxPipeline.from_pretrained(base_model,
|
|
| 20 |
vae=taef1,
|
| 21 |
torch_dtype=torch.bfloat16)
|
| 22 |
|
| 23 |
-
os.makedirs("frames", exist_ok=True)
|
| 24 |
-
def save_images_with_unique_filenames(image_list, save_directory):
|
| 25 |
-
if not os.path.exists(save_directory):
|
| 26 |
-
os.makedirs(save_directory)
|
| 27 |
-
|
| 28 |
-
paths = []
|
| 29 |
-
for image in image_list:
|
| 30 |
-
unique_filename = f"{uuid.uuid4()}.png"
|
| 31 |
-
file_path = os.path.join(save_directory, unique_filename)
|
| 32 |
-
image.save(file_path)
|
| 33 |
-
paths.append(file_path)
|
| 34 |
-
|
| 35 |
-
return paths
|
| 36 |
-
|
| 37 |
-
|
| 38 |
pipe.transformer.to(memory_format=torch.channels_last)
|
| 39 |
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 40 |
# pipe.enable_model_cpu_offload()
|
|
@@ -117,13 +102,9 @@ def generate(prompt,
|
|
| 117 |
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
|
| 118 |
avg_diff_x = avg_diff.cpu()
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, image_paths, images[scale_middle], post_generation_slider_update, seed
|
| 123 |
|
| 124 |
def update_pre_generated_images(slider_value, total_images):
|
| 125 |
-
print(total_images)
|
| 126 |
-
print(slider_value)
|
| 127 |
number_images = len(total_images)
|
| 128 |
if(number_images > 0):
|
| 129 |
scale_tuple = convert_to_centered_scale(number_images)
|
|
@@ -164,7 +145,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 164 |
|
| 165 |
x_concept_1 = gr.State("")
|
| 166 |
x_concept_2 = gr.State("")
|
| 167 |
-
total_images = gr.
|
| 168 |
|
| 169 |
avg_diff_x = gr.State()
|
| 170 |
|
|
|
|
| 20 |
vae=taef1,
|
| 21 |
torch_dtype=torch.bfloat16)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
pipe.transformer.to(memory_format=torch.channels_last)
|
| 24 |
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 25 |
# pipe.enable_model_cpu_offload()
|
|
|
|
| 102 |
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
|
| 103 |
avg_diff_x = avg_diff.cpu()
|
| 104 |
|
| 105 |
+
return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
|
|
|
|
|
|
| 106 |
|
| 107 |
def update_pre_generated_images(slider_value, total_images):
|
|
|
|
|
|
|
| 108 |
number_images = len(total_images)
|
| 109 |
if(number_images > 0):
|
| 110 |
scale_tuple = convert_to_centered_scale(number_images)
|
|
|
|
| 145 |
|
| 146 |
x_concept_1 = gr.State("")
|
| 147 |
x_concept_2 = gr.State("")
|
| 148 |
+
total_images = gr.Gallery()
|
| 149 |
|
| 150 |
avg_diff_x = gr.State()
|
| 151 |
|