Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -91,7 +91,7 @@ def generate(prompt,
|
|
| 91 |
x_concept_1="", x_concept_2="",
|
| 92 |
avg_diff_x=None,
|
| 93 |
total_images=[],
|
| 94 |
-
gradio_progress=gr.Progress()
|
| 95 |
):
|
| 96 |
# Translate prompt and concepts if Korean
|
| 97 |
prompt = translate_if_korean(prompt)
|
|
@@ -105,14 +105,14 @@ def generate(prompt,
|
|
| 105 |
seed = random.randint(0, MAX_SEED)
|
| 106 |
|
| 107 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
| 108 |
-
gradio_progress(0, desc="Calculating directions...")
|
| 109 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
| 110 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
| 111 |
|
| 112 |
images = []
|
| 113 |
high_scale = scale
|
| 114 |
low_scale = -1 * scale
|
| 115 |
-
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"):
|
| 116 |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
| 117 |
image = clip_slider.generate(prompt,
|
| 118 |
width=768,
|
|
@@ -138,7 +138,9 @@ def generate(prompt,
|
|
| 138 |
return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
| 139 |
|
| 140 |
def update_pre_generated_images(slider_value, total_images):
|
| 141 |
-
number_images =
|
|
|
|
|
|
|
| 142 |
if(number_images > 0):
|
| 143 |
scale_tuple = convert_to_centered_scale(number_images)
|
| 144 |
return total_images[scale_tuple.index(slider_value)][0]
|
|
@@ -200,7 +202,7 @@ footer {
|
|
| 200 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 201 |
x_concept_1 = gr.State("")
|
| 202 |
x_concept_2 = gr.State("")
|
| 203 |
-
total_images = gr.State([])
|
| 204 |
avg_diff_x = gr.State()
|
| 205 |
recalc_directions = gr.State(False)
|
| 206 |
|
|
@@ -347,7 +349,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 347 |
fn=generate,
|
| 348 |
inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions,
|
| 349 |
iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2,
|
| 350 |
-
avg_diff_x, total_images],
|
| 351 |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images,
|
| 352 |
post_generation_image, post_generation_slider, seed]
|
| 353 |
)
|
|
|
|
| 91 |
x_concept_1="", x_concept_2="",
|
| 92 |
avg_diff_x=None,
|
| 93 |
total_images=[],
|
| 94 |
+
gradio_progress=gr.Progress()
|
| 95 |
):
|
| 96 |
# Translate prompt and concepts if Korean
|
| 97 |
prompt = translate_if_korean(prompt)
|
|
|
|
| 105 |
seed = random.randint(0, MAX_SEED)
|
| 106 |
|
| 107 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
|
| 108 |
+
gradio_progress(0, desc="Calculating directions...")
|
| 109 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
| 110 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
| 111 |
|
| 112 |
images = []
|
| 113 |
high_scale = scale
|
| 114 |
low_scale = -1 * scale
|
| 115 |
+
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"):
|
| 116 |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
| 117 |
image = clip_slider.generate(prompt,
|
| 118 |
width=768,
|
|
|
|
| 138 |
return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
| 139 |
|
| 140 |
def update_pre_generated_images(slider_value, total_images):
|
| 141 |
+
number_images = 0
|
| 142 |
+
if total_images: # Check if total_images is not None and not empty
|
| 143 |
+
number_images = len(total_images)
|
| 144 |
if(number_images > 0):
|
| 145 |
scale_tuple = convert_to_centered_scale(number_images)
|
| 146 |
return total_images[scale_tuple.index(slider_value)][0]
|
|
|
|
| 202 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 203 |
x_concept_1 = gr.State("")
|
| 204 |
x_concept_2 = gr.State("")
|
| 205 |
+
total_images = gr.State([])
|
| 206 |
avg_diff_x = gr.State()
|
| 207 |
recalc_directions = gr.State(False)
|
| 208 |
|
|
|
|
| 349 |
fn=generate,
|
| 350 |
inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions,
|
| 351 |
iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2,
|
| 352 |
+
avg_diff_x, total_images, gr.Progress()], # Pass gr.Progress() here
|
| 353 |
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images,
|
| 354 |
post_generation_image, post_generation_slider, seed]
|
| 355 |
)
|