Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,7 +24,7 @@ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
|
|
| 24 |
torch_dtype=torch.bfloat16)
|
| 25 |
|
| 26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
| 27 |
-
|
| 28 |
#pipe.enable_model_cpu_offload()
|
| 29 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 30 |
|
|
@@ -74,6 +74,8 @@ def generate(concept_1, concept_2, scale, prompt, seed, recalc_directions, itera
|
|
| 74 |
for i in range(interm_steps):
|
| 75 |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
| 76 |
image = clip_slider.generate(prompt,
|
|
|
|
|
|
|
| 77 |
#guidance_scale=guidance_scale,
|
| 78 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 79 |
images.append(image)
|
|
@@ -115,6 +117,8 @@ def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
|
| 115 |
for i in range(interm_steps):
|
| 116 |
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
|
| 117 |
image = clip_slider.generate(prompt,
|
|
|
|
|
|
|
| 118 |
#guidance_scale=guidance_scale,
|
| 119 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 120 |
images.append(image)
|
|
|
|
| 24 |
torch_dtype=torch.bfloat16)
|
| 25 |
|
| 26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
| 27 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 28 |
#pipe.enable_model_cpu_offload()
|
| 29 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
| 30 |
|
|
|
|
| 74 |
for i in range(interm_steps):
|
| 75 |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
| 76 |
image = clip_slider.generate(prompt,
|
| 77 |
+
width=768,
|
| 78 |
+
height=768,
|
| 79 |
#guidance_scale=guidance_scale,
|
| 80 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 81 |
images.append(image)
|
|
|
|
| 117 |
for i in range(interm_steps):
|
| 118 |
cur_scale = low_scale + (high_scale - low_scale) * i / (steps - 1)
|
| 119 |
image = clip_slider.generate(prompt,
|
| 120 |
+
width=768,
|
| 121 |
+
height=768,
|
| 122 |
#guidance_scale=guidance_scale,
|
| 123 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
| 124 |
images.append(image)
|