Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,10 +31,15 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
|
|
| 31 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
| 32 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
| 33 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
|
|
|
|
|
|
| 34 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
|
|
|
| 35 |
print("avg_diff[0].dtype", avg_diff[0].dtype)
|
| 36 |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
|
| 37 |
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
|
|
|
|
|
|
|
| 38 |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
|
| 39 |
end_time = time.time()
|
| 40 |
print(f"direction time: {end_time - start_time:.2f} ms")
|
|
@@ -119,11 +124,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 119 |
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
| 120 |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
| 121 |
|
| 122 |
-
|
| 123 |
-
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
| 124 |
-
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
| 125 |
-
x.change(fn=update_x, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
| 126 |
-
y.change(fn=update_y, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
| 127 |
with gr.Tab(label="image2image"):
|
| 128 |
with gr.Row():
|
| 129 |
with gr.Column():
|
|
@@ -142,11 +143,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 142 |
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
| 143 |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
| 147 |
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a])
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
|
| 152 |
if __name__ == "__main__":
|
|
|
|
| 31 |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
|
| 32 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
| 33 |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
|
| 34 |
+
avg_diff[0].to(torch.float16)
|
| 35 |
+
avg_diff[1].to(torch.float16)
|
| 36 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
| 37 |
+
|
| 38 |
print("avg_diff[0].dtype", avg_diff[0].dtype)
|
| 39 |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
|
| 40 |
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
|
| 41 |
+
avg_diff_2nd[0].to(torch.float16)
|
| 42 |
+
avg_diff_2nd[1].to(torch.float16)
|
| 43 |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
|
| 44 |
end_time = time.time()
|
| 45 |
print(f"direction time: {end_time - start_time:.2f} ms")
|
|
|
|
| 124 |
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
| 125 |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
| 126 |
|
| 127 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
with gr.Tab(label="image2image"):
|
| 129 |
with gr.Row():
|
| 130 |
with gr.Column():
|
|
|
|
| 143 |
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
| 144 |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
|
| 145 |
|
| 146 |
+
submit.click(fn=generate,
|
| 147 |
+
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
| 148 |
+
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
| 149 |
+
x.change(fn=update_x, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
| 150 |
+
y.change(fn=update_y, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
| 151 |
+
submit_a.click(fn=generate,
|
| 152 |
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
| 153 |
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a])
|
| 154 |
+
x_a.change(fn=update_x, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
|
| 155 |
+
y_a.change(fn=update_y, inputs=[x_a,y_a, prompt, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
|
| 156 |
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|