Spaces:
Running
Running
File size: 14,487 Bytes
2755fb0 7f4feea 2755fb0 1ae484c 2755fb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from sentence_transformers import SentenceTransformer, util
from keybert import KeyBERT
import os
import sys
import urllib.request # 1. requests ๋์ urllib ์ํฌํธ
import json # 2. JSON ํ์ฑ์ ์ํด ์ํฌํธ
# --- 1. ๋ชจ๋ธ ๋ก๋ ---
try:
sbert_model = SentenceTransformer("jhgan/ko-sbert-nli")
kw_model = KeyBERT()
except Exception as e:
print(f"๋ชจ๋ธ ๋ก๋ฉ ์ค ์ค๋ฅ ๋ฐ์: {e}")
sbert_model = None
kw_model = None
# --- 2. ํ์ ํจ์ ์ ์ ---
def extract_keywords(text: str) -> list:
"""(TM 1) KeyBERT๋ก ํ
์คํธ์์ ํค์๋๋ฅผ ์ถ์ถํฉ๋๋ค."""
if not kw_model or not text:
return []
keywords = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 1), top_n=5, stop_words=['๊ธฐ์', 'ํนํ์', '์ค์ ', '์คํ', '์
๋๋ค', '์ํด'])
return [kw[0] for kw in keywords]
import ssl
def search_naver_api(keywords: list) -> list:
"""(API) Naver ๊ฒ์ API๋ก Snippet,Link ์์ง (urllib.request + SSL ์ฐํ)"""
NAVER_ID = os.environ.get("NAVER_ID")
NAVER_SECRET = os.environ.get("NAVER_SECRET")
# --- Check : ํค์๋ ํ์ธ ---
if not keywords:
print("[DEBUG] 'keywords' ๋ฆฌ์คํธ๊ฐ ๋น์ด์์ต๋๋ค.")
return []
query = " ".join(keywords)
encText = urllib.parse.quote(query)
url = f"https://openapi.naver.com/v1/search/news.json?query={encText}&display=10&sort=sim"
request = urllib.request.Request(url)
request.add_header("X-Naver-Client-Id", NAVER_ID)
request.add_header("X-Naver-Client-Secret", NAVER_SECRET)
context = ssl._create_unverified_context()
try:
response = urllib.request.urlopen(request, context=context)
rescode = response.getcode()
print(f"[DEBUG] Naver API ์๋ต ์ํ ์ฝ๋: {rescode}")
if rescode == 200:
response_body = response.read()
response_text = response_body.decode('utf-8')
results = json.loads(response_text).get('items', [])
outputs = []
for item in results:
if 'description' in item and 'link' in item:
outputs.append({
"snippet": item['description'].replace('<b>', '').replace('</b>', ''),
"url": item['link']
})
return outputs
#snippets = [item['description'].replace('<b>', '').replace('</b>', '') for item in results if 'description' in item]
#return snippets
else:
print(f"[DEBUG] ๐จ Naver API๊ฐ ์ค๋ฅ ์ฝ๋๋ฅผ ๋ฐํ: {rescode}")
return []
except urllib.error.HTTPError as http_err: # HTTP ์๋ฌ
print(f"[DEBUG] ๐จ Naver API HTTP ์ค๋ฅ ๋ฐ์: {http_err.code} - {http_err.reason}")
try:
print(f"[DEBUG] ๐จ ์๋ต ๋ด์ฉ: {http_err.read().decode('utf-8')}")
except: pass
except urllib.error.URLError as url_err: # ๋คํธ์ํฌ ์๋ฌ (SSL ํฌํจ)
print(f"[DEBUG] ๐จ Naver API URL/๋คํธ์ํฌ ์ค๋ฅ ๋ฐ์: {url_err.reason}")
except Exception as e:
print(f"[DEBUG] ๐จ Naver API (urllib) ํธ์ถ ์ค ์ ์ ์๋ ์ค๋ฅ ๋ฐ์: {type(e).__name__} - {e}")
return []
def get_similarity_score(original_text: str, snippets: list): # -> ๋ฐํ ํ์
์ด tensor๋ก ๋ฐ๋!
"""(TM 2) SBERT๋ก ์๋ณธ๊ณผ Snippet ๊ฐ์ ์ฝ์ฌ์ธ ์ ์ฌ๋ 'ํ
์'๋ฅผ ๊ณ์ฐํฉ๋๋ค."""
if not snippets or not sbert_model:
return None # <-- ์คํจ ์ None ๋ฐํ
try:
original_embedding = sbert_model.encode(original_text)
snippet_embeddings = sbert_model.encode(snippets)
cosine_scores = util.cos_sim(original_embedding, snippet_embeddings)
return cosine_scores
except Exception as e:
return None
# --- 3. ์ต์ข
๋ฉ์ธ ํจ์ ---
def get_crossref_score_and_reason(article_body: str) -> dict:
"""'๋ด์ฉ ๋น์ ๋ขฐ์ฑ' ๋ชจ๋์ ์ต์ข
๊ฒฐ๊ณผ๋ฌผ์ ๋ฐํํฉ๋๋ค."""
keywords = extract_keywords(article_body)
if not keywords:
return {
"score": 1.0,
"reason": "๋ณธ๋ฌธ์์ ํต์ฌ ํค์๋๋ฅผ ์ถ์ถํ ์ ์์ต๋๋ค.",
"recommendation": "๋ณธ๋ฌธ์ด ๋๋ฌด ์งง๊ฑฐ๋ ๋ถ์ํ ์ ์๋ ๋ด์ฉ์
๋๋ค.",
"found_urls": []
}
print(f"[DEBUG] ์ถ์ถ๋ ํค์๋: {keywords}")
search_results = search_naver_api(keywords)
if not search_results:
return {
"score": 1.0,
"reason": "๊ด๋ จ ์ฃผ์ ๋ฅผ ๋ค๋ฃฌ ๊ต์ฐจ ๊ฒ์ฆ ๊ธฐ์ฌ๊ฐ ์์ต๋๋ค.",
"recommendation": "์ฃผ์ ํค์๋๊ฐ ํ ์ธ๋ก ์ฌ์์๋ ๋ค๋ฃจ์ด์ง๋์ง ํ์ธ์ด ํ์ํฉ๋๋ค.",
"paired_results": []
}
snippets = [item['snippet'] for item in search_results]
found_urls = [item['url'] for item in search_results]
cosine_scores = get_similarity_score(article_body, snippets)
if cosine_scores is None:
return {
"score": 1.0,
"reason": "SBERT ์ ์ฌ๋ ๊ณ์ฐ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค.",
"recommendation": "๋ชจ๋ธ ์๋ฒ๋ฅผ ํ์ธํ์ธ์.",
"paired_results": []
}
avg_similarity = cosine_scores.mean().item()
# URL + ๊ฐ๋ณ ์ ์' ์(pair) ๋ฆฌ์คํธ
paired_results = []
for i in range(len(snippets)):
paired_results.append({
"url": found_urls[i],
"similarity": cosine_scores[0][i].item() # 0~1 ์ฌ์ด์ SBERT ์ ์
})
final_score = 1.0 - avg_similarity
reason = f"๊ต์ฐจ ๊ฒ์ฆ๋ ๊ธฐ์ฌ {len(snippets)}๊ฑด๊ณผ์ ํ๊ท ๋ด์ฉ ์ผ์น๋๋ {avg_similarity*100:.0f}%์
๋๋ค."
recommendation = "์ํธํฉ๋๋ค."
if avg_similarity < 0.3:
reason = f"๊ด๋ จ ๊ธฐ์ฌ {len(snippets)}๊ฑด๊ณผ ๋ด์ฉ ์ผ์น๋๊ฐ ๋งค์ฐ ๋ฎ์ต๋๋ค. (ํ๊ท {avg_similarity*100:.0f}%)"
recommendation = "๊ธฐ์ฌ์ ํต์ฌ ์ฌ์ค๊ด๊ณ๊ฐ ํ ์ธ๋ก ์ฌ์์๋ ๋ค๋ฃจ์ด์ง๋์ง ํ์ธ์ด ํ์ํฉ๋๋ค."
return {
"score": max(0, min(1, round(final_score,4))),
"reason": reason,
"recommendation": recommendation,
"paired_results": paired_results
}
# --- 4. ํ
์คํธ ์ฝ๋ ---
if __name__ == "__main__":
print("CrossrefScore ๋ชจ๋ ํ
์คํธ ์์...")
test_body="""
๋ฐฐ๋๋ฏผํด ๊ตญ๊ฐ๋ํ ์์ธ์์ด ์ธ๋์คํ ๊ฒฐ์น์ ์์ 2-0 ์์น์ ๊ฑฐ๋๊ณ 2์ฃผ ์ฐ์ ๊ตญ์ ๋ํ์์ ์ฐ์น์ ์ฐจ์งํ๋ ์พ๊ฑฐ๋ฅผ ์ด๋ค๋ค. ๊ทธ๋ฐ๋ฐ ์์ธ์์๊ฒ '์ข์ง ์์' ์์๋ ํจ๊ป ์ ํด์ก๋ค.
์์ธ์์ด 2025๋
์ํด ๋ค์ด ์น๋ฅธ 2์ฐจ๋ก ๊ตญ์ ๋ํ๋ฅผ ๋ชจ๋ ์ ํจํ๋ค.
์์ธ์์ ์ง๋ 19์ผ ์ธ๋ ๋ด๋ธ๋ฆฌ์์ ์ด๋ฆฐ ์ธ๊ณ๋ฐฐ๋๋ฏผํด์ฐ๋งน ์๋ํฌ์ด ์ํผ 750 ์ธ๋์คํ ์ฌ์ ๋จ์ ๊ฒฐ์น์ ์์ ์ธ๊ณ 12์ ํ๊ตญ์ ํฌ๋ฅธํ์ ์ด์ถ์ก์ 2-0์ผ๋ก ๋ฌผ๋ฆฌ์น๋ฉฐ ์ฐ์น์ ์ฐจ์งํ๋ค.
์์ธ์์ ์ด๋ ๊ฒฐ์น์ ์์ ์ผ์ฐ๊ฐ์น ์น๊ธฐ๋ฅผ ์ก์๋ค.
์์ธ์์ 1๊ฒ์์ 21-12๋ก ์๋ํ๋ค. 2๊ฒ์์์๋ ํน์ ์ ์ฒ ๋ฒฝ ์๋น๋ก 15-6๊น์ง ๊ฒฉ์ฐจ๋ฅผ ๋ฒ๋ ธ๋ค. ํนํ 9-18๋ก ๋ค์ง ์ํฉ์์ ๋ง์ง๋ง ํ์ ๋คํด ํ๊ตญ์ ์ด์ถ์ก์ ๋ ์นด๋ก์ด ๊ณต๊ฒฉ์ ๋ชจ๋ ๋ง๋ฐ์์น ๋์ ์๋์ ๋ฒ์ค์ ์ ๋ํด ๋ด๋ฉฐ ์ถ๊ฒฉ ์์ง๋ฅผ ๊บพ์ด๋ฒ๋ ธ๋ค. 2๊ฒ์ ์ค์ฝ์ด๋ 21-9์๋ค.
์์ธ์์ 12์ผ ๋ง๋ ์ด์์ ์ฟ ์๋ผ๋ฃธํธ๋ฅด์์ ๋๋ ์๋ํฌ์ด ์ํผ 1000 ๋ง๋ ์ด์์์คํ์์ ์ฌํด ์ฒซ ์ฐ์น์ ์ฐจ์งํ ๋ฐ ์ด์ด 2์ฃผ ์ฐ์์ผ๋ก ์ฐ์น ํธ๋กํผ๋ฅผ ๋ฐ๋๋ค.
์์ธ์์ ์ด๋ฒ์ ์ถ์ ํ ์ธ๋์คํ์์ 5๊ฒฝ๊ธฐ๋ฅผ ์น๋ฅด๋ ๋์ ํ ๊ฒ์๋ ๋ด์ฃผ์ง ์๋ ์๋ฒฝํ ๊ฒฝ๊ธฐ ์ด์์ผ๋ก ๋ฐฐ๋๋ฏผํด ์ฌ์๋จ์ ์ธ๊ณ 1์ ๋ค์ด '์ต๊ฐ ์ค๋ ฅ'์ ์๋ํ๋ค.
ํด 2์ฃผ ์ฐ์ ๊ตญ์ ๋ํ์์ ์ฐ์นํ๋ฉฐ ๊ธฐ์จ์ ๋ง๋ฝํ ์์ธ์ ์
์ฅ์์ ๋ถ์พํ ์ ์๋ ์์์ด ํจ๊ป ์ ํด์ก๋ค. ๋ํ๋ฐฐ๋๋ฏผํดํํ ๊นํ๊ท ํ์ฅ์ด ์ฐจ๊ธฐ ํ์ฅ ์ ๊ฑฐ์ '๊ธฐํธ 4๋ฒ'์ ๋ฌ๊ณ ์ถ๋งํ ์์ ์ธ ๊ฒ์ผ๋ก ์ ํด์ก๋ค.
์์ธ์์ ์ง๋ํด ํ๋ฆฌ์ฌ๋ฆผํฝ์์ ๊ธ๋ฉ๋ฌ์ ๋ด ์ดํ ๊นํ๊ท ํ์ฅ์ด ์ด๋์ด์จ ๋ฐฐ๋๋ฏผํดํํ์ ๋ฐฐ๋๋ฏผํด๋ํํ ์ด์์ ๋ฌธ์ ๋ฅผ ํญ๋กํ๋ '์์ฌ ๋ฐ์ธ'์ ํ๋ค. ๋น์ ์์ธ์์ ์ฉ๊ธฐ ์๋ ์ธ์นจ์ ํ๊ตญ ๋ฐฐ๋๋ฏผํด๊ณ์ ๊ฐํ์ ์ด๊ตฌํ๋ ๋ชฉ์๋ฆฌ๋ก ์ด์ด์ก๋ค.
20์ผ ์ดํฌ๋ฐ์ด ๋ณด๋์ ๋ฐ๋ฅด๋ฉด ๋ฐฐ๋๋ฏผํดํํ๋ ๋ชฉ์์ผ์ธ 23์ผ ์ฐจ๊ธฐ ๋ฐฐ๋๋ฏผํดํํ์ฅ ์ ๊ฑฐ๋ฅผ ์น๋ฅด๊ธฐ๋ก ํ๋ค. ๊ถ์ง์ ๋ชฐ๋ ธ๋ค๊ฐ ๊ทน์ ์ผ๋ก ์ถ๋ง ์๊ฒฉ์ ํ๋ณตํ ๊นํ๊ท ํ์ฅ ์ญ์ ๊ธฐํธ 4๋ฒ์ผ๋ก ์ด๋ฒ ์ ๊ฑฐ์ ๋์๋ ๊ฒ์ผ๋ก ์ ํด์ก๋ค.
๋ฐฐ๋๋ฏผํดํํ๋ ์ด๋ "(๋ฐฐ๋๋ฏผํดํํ) ์ ๊ฑฐ์ด์์์ํ๋ ๋ฏธ๋ค์ก๋ ์ฐจ๊ธฐ ํ์ฅ ์ ๊ฑฐ๋ฅผ 23์ผ ์ค์ 10์๋ถํฐ ์คํ 5์๊น์ง ์งํํ๊ธฐ๋ก ํ๋ค"๋ผ๊ณ ๋ฐํ๋ค.
๋ฐฐ๋๋ฏผํดํํ์ฅ ์ ๊ฑฐ๋ ์ ์ด 16์ผ ์ด๋ ธ์ด์ผ ํ์ง๋ง ์ ๊ฑฐ์ด์์์ํ๊ฐ ์
ํ๋ณด๋ฅผ ๋ถํํ ๊นํ๊ท ํ์ฅ์ด ํ๋ณด์ ๋ฑ๋ก ๋ฌดํจ ํจ๋ ฅ ์ ์ง ๊ฐ์ฒ๋ถ ์ ์ฒญ์ ์ ๊ธฐํ๊ณ ๋ฒ์์ด ์ด๋ฅผ ๋ฐ์๋ค์ด๋ฉด์ ์ ๊ฑฐ๊ฐ 1์ฐจ๋ก ๋ฏธ๋ค์ก๋ค. ๋ฒ์์ ๊ธฐ์กด ์ ๊ฑฐ์ด์์์ํ์ ๊ฒฐ์ ์ ์ค๋ํ ์ ์ฐจ์ ํ์๊ฐ ์๋ ๋งํผ ์
ํ๋ณด ๋ถํ ์กฐ์ฒ์ ํจ๋ ฅ์ ์์๋ก๋ผ๋ ์ ์งํด์ผ ํ๋ค๊ณ ํ๋จํ๋ค.
ํ๋ณด ์๊ฒฉ์ ๋์ฐพ์ ๊นํ๊ท ํ์ฅ์ ์
์ฅ๋ฌธ์ ํตํด ์ ๊ฑฐ์ด์์์ํ๋ฅผ ๊ฐํ๊ฒ ๋นํํ๋ค.
๊น ํ์ฅ์ "์ ๊ฑฐ์ด์์์ํ๊ฐ 23์ผ๋ก ๋ ์ง๋ฅผ ์ก์ ๊ฒ์ ์ง๋ 9์ผ๋ถํฐ ์ ๊ฑฐ ์ด๋์ ๋์
ํ ์ธ ํ๋ณด์ ๋น๊ตํ๋ฉด (๋์๊ฒ) ๋๋ฌด๋ ๋ถ๊ณต์ ํ ๊ฒฐ์ "์ด๋ผ๊ณ ์ง์ ํ๋ค.
์ด์ด "๋ฒ์์ ํ๊ฒฐ์ ๋ฌด์ํ ์ ๊ฑฐ์ด์์์ํ์ ์ด๋ฅผ ๋ฐฉ๊ด ์ค์ธ ํํ๋ฅผ ์๋๋ก ๊ฐ๋ ฅํ ๋ฒ์ ์กฐ์น์ ๋๋ถ์ด ๋ค์ ์ ๊ฑฐ ์ค์ง ๊ฐ์ฒ๋ถ ์ ์ฒญ์ ํ๋ ค ํ๋ค. ํ์ง๋ง ๋ํ๋ฏผ๊ตญ ๋ฐฐ๋๋ฏผํด๊ณผ ์ ์, ์ง๋์, ๋ํธ์ธ๋ค์ ์ฌ๋ํ๋ ์ฌ๋์ผ๋ก์ ์ฐจ๋ง ๊ทธ๋ ๊ฒ๊น์ง ํ๋ฉด ์ ๋๋ค๋ ๊ฒฐ๋ก ์ ๋๋ค. ์ด ์๊ฐ๋ถ๋ก ์ ๊ฑฐ์ด์์์ํ์ ๊ฒฐ์ ์ ์์ฉํ๊ณ ์ด๋ฒ ์ ๊ฑฐ์ ์ํ ๊ฒ"์ด๋ผ๊ณ ๋ง๋ถ์๋ค.
๋ฐฐ๋๋ฏผํดํํ์ฅ ์ ๊ฑฐ์๋ ์ต์นํ ์ ๋๊ตฌ๋ฐฐ๋๋ฏผํดํํ์ฅ(ํ์ฑ์ฐ์
๋ํ), ์ ๊ฒฝํ ํ๊ตญ์ค์
๋ฐฐ๋๋ฏผํด์ฐ๋งน ํ์ฅ(์ด์ ์ฝ๋ฆฌ์ ๋ํ์ด์ฌ), ์ฌ๋ฆผํฝ ๊ธ๋ฉ๋ฌ๋ฆฌ์คํธ ์ถ์ ์ ๊น๋๋ฌธ ์๊ด๋ ์คํฌ์ธ ๊ณผํ๋ถ ๊ต์๊ฐ ํ๋ณด๋ก ๋ฑ๋กํ๋ค. ์ฌ๊ธฐ์ ๊นํ๊ท ํ์ฅ์ด ํจ๊ป ํ๋ณด๋ก ์ ๊ฑฐ๋ฅผ ์น๋ฅด๊ฒ ๋๋ค.
"""
# test_body = """
# ์ธ๊ณ 1์ ์ธ๊ณต์ง๋ฅ(AI) ์นฉ ์์ฐ๊ธฐ์
์๋น๋์์ ์ ์จ ํฉ ์ต๊ณ ๊ฒฝ์์(CEO)๊ฐ โAI ๊ฒฝ์์์ ์ค๊ตญ์ด ๋ฏธ๊ตญ์ ์ด๊ธธ ๊ฒโ์ด๋ผ๊ณ ๊ฒฝ๊ณ ํ๋ค.
# ํฉ CEO๋ 5์ผ(ํ์ง ์๊ฐ) ์๊ตญ ๋ฐ๋์์ ํ์ด๋ธ์
ํ์์ค(FT) ์ฃผ์ต๋ก ์ด๋ฆฐ ํ์ฌ์์ โ๋ฏธ๊ตญ๊ณผ ์๊ตญ ๋ฑ ์๋ฐฉ๊ตญ๊ฐ๋ค์ ๋์์ฃผ์์ ๋ฐ๋ชฉ์ด ์กํ ์๋ค. ์ฐ๋ฆฌ์๊ฒ ๋ ๋ง์ ๋๊ด์ฃผ์๊ฐ ํ์ํ๋คโ๋ฉฐ ์ด ๊ฐ์ด ๋งํ๋ค. ๊ทธ๋ ๋ฏธ๊ตญ ๊ฐ ์ฃผ(ๅท)์์ ์ ์ ์ค์ธ AI ๊ด๋ จ ์๋ก์ด ๊ท์ ์ ์ธ๊ธํ๋ฉฐ โ๊ทธ ๊ฒฐ๊ณผ 50๊ฐ์ ์๋ก์ด ๊ท์ ๊ฐ ์๊ธธ ์๋ ์๋คโ๊ณ ์ฐ๋ คํ๋ค. ๊ท์ ํ๊ฒฝ์ด ์๋ฐฉ ๊ตญ๊ฐ ๊ธฐ์ ๊ฒฝ์๋ ฅ์ ๋จ์ด๋จ๋ฆฐ๋ค๋ ์ง์ ์ด๋ค.
# ๋ฐ๋ฉด ์ค๊ตญ ๊ธฐ์
์ ์ ๋ถ ์ ์ฑ
์ ํ์
์ด ๋น ๋ฅด๊ฒ ๊ธฐ์ ์ ๋ฐ์ ์ํฌ ์ ์๋ ํ๊ฒฝ์ด๋ผ๊ณ ๊ฐ์กฐํ๋ค. ํฉ CEO๋ โ์ค๊ตญ์์๋ ์ ๊ธฐ๊ฐ ๋ฌด๋ฃโ๋ผ๋ฉฐ โ์๋์ง ๋ณด์กฐ๊ธ ์ ์ฑ
๋๋ถ์ ํ์ง ๊ธฐ์ ๊ธฐ์
๋ค์ด ์๋น๋์ ๋์ฒด AI ์นฉ์ ํจ์ฌ ์ ๋ ดํ๊ฒ ์ด์ฉํ ์ ์๋คโ๊ณ ๋งํ๋ค.
# ์ผ๋ฐ์ ์ผ๋ก ์๋น๋์ ๊ณ ์ฑ๋ฅ ์นฉ์ด ์ฐ์ฐ ๋ฅ๋ ฅ๊ณผ ์ ๋ ฅ ํจ์จ์ฑ ๋ฉด์์ ํ์จ์ด ๋ฑ ์ค๊ตญ์ฐ ์นฉ์ ์๋ํ๋ ๊ฒ์ผ๋ก ํ๊ฐ๋์ง๋ง, ์ค๊ตญ์ด ์๋์ง ๋ณด์กฐ๊ธ์ ์ง๊ธํ๋ฉด ๊ธฐ์
๋ค์ด ํ์จ์ด ์นฉ์ ์ฐ๋๋ผ๋ ์๋์ง ๋น์ฉ์ ๋ง์ด ๋ถ๋ดํ์ง ์๊ฒ ๋จ์ผ๋ก์จ ์๋น๋์ ์นฉ ์ฅ์ ์ด ์ผ์ ๋ถ๋ถ ์์๋๋ค๋ ๋ป์ด๋ค.
# ์ค์ ๋ก ์ค๊ตญ์ด ๋ฐ์ดํธ๋์ค, ์๋ฆฌ๋ฐ๋ฐ, ํ
์ผํธ ๋ฑ ์ฃผ์ ๊ธฐ์ ๊ธฐ์
์ด ์ด์ํ๋ ๋ฐ์ดํฐ ์ผํฐ์ ์ ๋ ฅ ์๊ธ์ ์ต๋ 50%๊น์ง ์ธํํ๋ ๋ณด์กฐ๊ธ ์ ๋๋ฅผ ๋์
ํ๋ค๊ณ FT๊ฐ ์ต๊ทผ ๋ณด๋ํ๋ค. ์ง๋ฐฉ ์ ๋ถ๊ฐ ์๊ตญ์ฐ ์นฉ์ ์ฌ์ฉํ๋ฉด ์๋น๋์๋ณด๋ค ์๋์ง ํจ์จ์ด ๋จ์ด์ ธ ๋ฐ์ดํฐ์ผํฐ ์ด์๋น ๋ถ๋ด์ด ํฌ๋ค๋ ์
๊ณ ๋ถ๋ง์ ์ ์ํ ๋ค ์ธ์ผํฐ๋ธ๋ฅผ ํ๋ํ๋ค.
# ํฉ CEO์ ์ด๋ ๋ฐ์ธ์ ๋๋๋ ํธ๋ผํ ๋ฏธ๊ตญ ๋ํต๋ น์ด ์๋น๋์ ์ต์ฒจ๋จ ์นฉ ์ค๊ตญ ์์ถ๊ธ์ง๋ฅผ ๊ณ์ ๊ณ ์ํ๊ฒ ๋ค๋ ๋ฐฉ์นจ์ ๋ฐํ ์ดํ ๋์ ๋์ฑ ์ฃผ๋ชฉ๋ฐ์๋ค. ํธ๋ผํ ๋ํต๋ น์ ์ง๋ 2์ผ ๊ณต๊ฐ๋ CBS์์ ์ธํฐ๋ทฐ์์ โ์ค๊ตญ์ด ์๋น๋์์ ๊ฑฐ๋ํ๋ ๊ฒ์ ํ์ฉํ๊ฒ ์ง๋ง ์ต์ฒจ๋จ ๊ธฐ์ ์ ์ฌ์ฉํ๋ ๊ฒ์ ํ์ฉํ์ง ์์ ๊ฒโ์ด๋ผ๋ฉฐ โ์ต์ฒจ๋จ ๊ธฐ์ ์ ๋ฏธ๊ตญ ์ธ์๋ ๋๊ตฌ๋ ์ฌ์ฉํ์ง ๋ชปํ๊ฒ ํ ๊ฒโ์ด๋ผ๊ณ ๋ชป ๋ฐ์๋ค.
# ์๋น๋์๋ ํ์ฌ AI ์นฉ ์์ฅ 80% ์ด์์ ์ฅ์
ํ ๋
์ ๊ธฐ์
์ด์ง๋ง, ๊ฐ์ฅ ํฐ ์ค๊ตญ ์์ฅ์ด ํธ๋ผํ ํ์ ๋ถ๊ฐ ์ฃผ๋ํ๋ ๊ณ ๊ฐ๋ ์์ถ ๊ท์ ๋ก ์ฌ์ค์ ๋งํ์๋ค. ์ด์ ์๋น๋์๋ ์ค๊ตญ ์์ฅ์ฉ์ผ๋ก ์ (ไฝ)์ฑ๋ฅ AI ์นฉ์ ๋ฐ๋ก ์ ์ํ๊ณ ํด๋น ์นฉ ๋งค์ถ 15%๋ฅผ ๋ฏธ ์ ๋ถ์ ์ง๋ถํ๊ธฐ๋ก ํฉ์ํ๋ค. ๊ทธ๋ฌ๋ ์ด๋ง์ ๋ ๋ฏธ ์ ๋ถ๊ฐ ๊ด๋ จ ๊ท์ ์ฑํ์ ๋ฏธ๋ฃจ๊ณ ์์ด ์ฌ์ค์ ํ๋งค๊ฐ ์ค๋จ๋ ์ํ๋ผ๊ณ FT๋ ๋ณด๋ํ๋ค.
# ํธ๋ผํ ๋ํต๋ น์ ํฉ CEO์ ๋์ง๊ธด ๋ก๋น์ ํ๋ ์ง๋ 10์ 30์ผ ์ด๋ฆฐ ๋ฏธ์ค ์ ์ํ๋ด์์ ์๋น๋์ ์ฒจ๋จ AI ๋์ค ์์ถ ๋ฌธ์ ๋ฅผ ์์ ์ ํฌํจ์ํฌ ๊ณํ์ด์์ผ๋ ์ฐธ๋ชจ์ง์ ๊ฐ๋ ฅํ ๋ฐ๋๋ก ๋ง์์ ๋ฐ๊พผ ๊ฒ์ผ๋ก ์๋ ค์ก๋ค. ํธ๋ผํ ๋ํต๋ น์ ๋ฏธ์ค ์ ์ํ๋ด ์ดํ ๊ธฐ์๋ค์๊ฒ โํ๋ด์์ ๋ธ๋์ฐ(์๋น๋์ ์ต์ฒจ๋จ AI ์นฉ ์๋ฆฌ์ฆ) ์ด์ผ๊ธฐ๋ ๋์ค์ง ์์๋คโ๊ณ ์ ํ๋ค.
# """
# if "์ฌ๊ธฐ์" in test_body:
# print("\n๐จ ๊ฒฝ๊ณ : 'test_body' ๋ณ์์ ํ
์คํธํ ์ค์ ๊ธฐ์ฌ ๋ณธ๋ฌธ์ ๋ฃ์ด์ฃผ์ธ์!\n")
# else:
result = get_crossref_score_and_reason(test_body)
print("\n--- ์ต์ข
๊ฒฐ๊ณผ ---")
print(f"Score: {result['score']}")
print(f"Reason: {result['reason']}")
print(f"Recommendation: {result['recommendation']}")
print(f"Found URLs: {result['paired_results']}") |