Spaces:
Sleeping
Sleeping
File size: 16,896 Bytes
119408d 5992639 aed25cb 119408d ef09325 119408d 3bbffd1 aed25cb 845160c aed25cb ef09325 aed25cb f77cc3a aed25cb f77cc3a aed25cb ef09325 aed25cb f77cc3a ef09325 aed25cb ef09325 119408d 3bbffd1 ef09325 5625e63 ef09325 3bbffd1 ef09325 3bbffd1 ef09325 3bbffd1 ef09325 3bbffd1 119408d ef09325 119408d ef09325 119408d ef09325 119408d 629b772 119408d ef09325 119408d ef09325 119408d ef09325 119408d 6be7aaf ef09325 6be7aaf ef09325 6be7aaf ef09325 6be7aaf ef09325 119408d ef09325 629b772 ef09325 119408d 5992639 ef09325 5992639 ef09325 5992639 ef09325 6be7aaf ef09325 6be7aaf ef09325 6be7aaf ef09325 6be7aaf ef09325 757771b a9080f9 ef09325 2daa58c ef09325 2daa58c ef09325 5625e63 ef09325 2daa58c ef09325 14edf71 ef09325 aed25cb ef09325 2daa58c ef09325 aed25cb ef09325 2f836f5 8864f15 ef09325 2daa58c ef09325 aed25cb ef09325 7480d2a ef09325 6be7aaf ef09325 aed25cb ef09325 aed25cb 119408d ef09325 2daa58c ef09325 2daa58c 9b54924 ef09325 7f6a022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import gradio as gr
import requests
import os
from dotenv import load_dotenv
from io import BytesIO
from PIL import Image
import PyPDF2
from pdf2image import convert_from_path
import tempfile
import sqlite3
from datetime import datetime
# Load environment variables
load_dotenv()
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
HYPERBOLIC_API_KEY = os.getenv("HYPERBOLIC_API_KEY")
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
ADMIN_PASSWORD = "BT54iv!@"
DB_PATH = "students.db"
# --- DATABASE FUNCTIONS ---
def init_database():
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS students (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
medical_school TEXT NOT NULL,
year TEXT NOT NULL,
registration_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
conn.close()
def save_student(name, medical_school, year):
try:
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("INSERT INTO students (name, medical_school, year) VALUES (?, ?, ?)", (name, medical_school, year))
conn.commit()
conn.close()
return True
except Exception as e:
print(f"Error saving student: {e}")
return False
def get_all_students():
try:
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT id, name, medical_school, year, registration_date FROM students ORDER BY registration_date DESC")
return cursor.fetchall()
except Exception:
return []
init_database()
# --- API CONFIGURATION ---
HYPERBOLIC_API_URL = "https://api.hyperbolic.xyz/v1/chat/completions"
HYPERBOLIC_MODEL = "meta-llama/Llama-3.3-70B-Instruct"
ELEVENLABS_API_URL = "https://api.elevenlabs.io/v1/text-to-speech"
ELEVENLABS_VOICE_ID = "nPczCjzI2devNBz1zQrb"
# --- LOGIC FUNCTIONS ---
def generate_audio(text: str, student_name: str = None) -> str:
if not ELEVENLABS_API_KEY or not text: return None
if student_name: text = f"Welcome to Viva, Doctor {student_name}, let's start. {text}"
try:
url = f"{ELEVENLABS_API_URL}/{ELEVENLABS_VOICE_ID}"
headers = {"Accept": "audio/mpeg", "Content-Type": "application/json", "xi-api-key": ELEVENLABS_API_KEY}
data = {"text": text, "model_id": "eleven_turbo_v2", "voice_settings": {"stability": 0.5, "similarity_boost": 0.5}}
response = requests.post(url, json=data, headers=headers)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
f.write(response.content)
return f.name
return None
except Exception as e:
print(f"Error generating audio: {e}")
return None
def is_anatomy_related(query: str) -> tuple[bool, str]:
prompt = f"Is this question related to human anatomy ONLY? '{query}'. Respond YES or NO."
try:
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HYPERBOLIC_API_KEY}"}
payload = {"model": HYPERBOLIC_MODEL, "messages": [{"role": "user", "content": prompt}], "max_tokens": 10}
response = requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload, timeout=10)
if "YES" in response.json()["choices"][0]["message"]["content"].upper(): return True, ""
return False, "β οΈ Please ask questions related to anatomy only."
except: return True, ""
def search_anatomy_image(query: str) -> tuple[list, str]:
try:
params = {"engine": "google_images", "q": f"{query} anatomy diagram", "api_key": SERPAPI_KEY, "num": 5, "safe": "active"}
data = requests.get("https://serpapi.com/search", params=params).json()
if "images_results" in data:
return [img["original"] for img in data["images_results"] if not img["original"].endswith('.svg')], ""
return [], "No images found."
except Exception as e: return [], str(e)
def download_image(url):
try:
headers = {'User-Agent': 'Mozilla/5.0'}
return Image.open(BytesIO(requests.get(url, headers=headers, timeout=10).content))
except: return None
def generate_anatomy_info(query: str) -> str:
try:
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HYPERBOLIC_API_KEY}"}
prompt = f"Provide a detailed anatomy summary for medical students about: {query}. Use emojis for sections."
payload = {"model": HYPERBOLIC_MODEL, "messages": [{"role": "user", "content": prompt}], "max_tokens": 600}
return requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload).json()["choices"][0]["message"]["content"]
except Exception as e: return f"Error: {e}"
def generate_viva_questions(topic: str) -> list:
try:
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HYPERBOLIC_API_KEY}"}
prompt = f"Generate 5 hard anatomy VIVA questions on: {topic}. Format: Q1: ... HINT: ... ANSWER: ..."
payload = {"model": HYPERBOLIC_MODEL, "messages": [{"role": "user", "content": prompt}], "max_tokens": 800}
content = requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload).json()["choices"][0]["message"]["content"]
questions = []
current = {}
for line in content.split('\n'):
line = line.strip()
if line.startswith('Q') and ':' in line:
if current: questions.append(current)
current = {'question': line.split(':', 1)[1].strip()}
elif line.startswith('HINT:'): current['hint'] = line.split(':', 1)[1].strip()
elif line.startswith('ANSWER:'): current['answer'] = line.split(':', 1)[1].strip()
if current: questions.append(current)
return questions[:5]
except: return []
def evaluate_viva_answer(question, student_ans, expected):
if not student_ans.strip(): return "Please provide an answer.", "βΈοΈ"
try:
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HYPERBOLIC_API_KEY}"}
prompt = f"Evaluate this VIVA answer. Question: {question}. Student: {student_ans}. Expected: {expected}. Give feedback and score."
payload = {"model": HYPERBOLIC_MODEL, "messages": [{"role": "user", "content": prompt}], "max_tokens": 400}
feedback = requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload).json()["choices"][0]["message"]["content"]
emoji = "π" if "DISTINCTION" in feedback.upper() else "β
" if "PASS" in feedback.upper() else "β οΈ"
return f"{emoji} **Feedback:**\n\n{feedback}\n\nπ **Ref:** {expected}", emoji
except: return "Error evaluating.", "β οΈ"
def process_anatomy_query(query):
if not query.strip(): return None, "", "Enter a question."
valid, msg = is_anatomy_related(query)
if not valid: return None, "", msg
urls, err = search_anatomy_image(query)
info = generate_anatomy_info(query)
img = None
for url in urls:
img = download_image(url)
if img: break
return img, f"## π Key Learning Points\n\n{info}", err
def process_uploaded_book(pdf_file):
if not pdf_file: return [], "No file uploaded."
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
tmp.write(pdf_file)
tmp_path = tmp.name
images = convert_from_path(tmp_path, dpi=150)
reader = PyPDF2.PdfReader(tmp_path)
data = []
for i, img in enumerate(images):
txt = reader.pages[i].extract_text()[:2000] if i < len(reader.pages) else ""
data.append((img, f"Page {i+1}", txt))
os.unlink(tmp_path)
return data, f"Processed {len(data)} pages."
except Exception as e: return [], f"Error: {e}"
def analyze_book_image(image, page_info, page_text):
try:
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HYPERBOLIC_API_KEY}"}
prompt = f"Analyze this anatomy book page ({page_info}): {page_text}. Give summary, clinical points, and 15 study questions."
payload = {"model": HYPERBOLIC_MODEL, "messages": [{"role": "user", "content": prompt}], "max_tokens": 1000}
return requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload).json()["choices"][0]["message"]["content"]
except Exception as e: return f"Error: {e}"
def start_viva_mode(topic, image, name=""):
if not topic: return [gr.update()] * 11
qs = generate_viva_questions(topic)
if not qs: return [gr.update()] * 11
audio = generate_audio(qs[0]['question'], name)
return (
gr.update(visible=True), # Container
f"**VIVA ACTIVE:** {topic}", # Status
image, # Image
f"### Q1: {qs[0]['question']}", # Q Display
f"π‘ {qs[0].get('hint','')}", # Hint
"", "", # Answer, Feedback
gr.update(interactive=True, value="Submit"), # Button
qs, audio, name
)
def submit_viva_answer_logic(ans, qs, idx, name):
if idx >= len(qs): return "Done", "", "", "", gr.update(interactive=False), idx, None
fb, _ = evaluate_viva_answer(qs[idx]['question'], ans, qs[idx].get('answer',''))
next_idx = idx + 1
if next_idx < len(qs):
nxt = qs[next_idx]
audio = generate_audio(nxt['question'], name)
return f"### Q{next_idx+1}: {nxt['question']}", f"π‘ {nxt.get('hint','')}", "", fb, gr.update(), next_idx, audio
else:
return "### π VIVA Complete!", "", "", fb, gr.update(interactive=False, value="Done"), next_idx, None
# --- GRADIO UI ---
CSS = """
/* HIDE DEFAULT TABS HEADER to use Custom Nav */
.tabs > .tab-nav { display: none !important; }
#nav_bar { display: flex; gap: 10px; overflow-x: auto; padding-bottom: 5px; }
#nav_bar button { flex: 1; white-space: nowrap; }
"""
with gr.Blocks(title="AnatomyBot") as demo:
# State
student_name = gr.State("")
viva_qs = gr.State([])
q_idx = gr.State(0)
cur_topic = gr.State("")
cur_img = gr.State(None)
cur_book_topic = gr.State("")
# Main App
with gr.Column():
gr.Markdown("# π©Ί AnatomyBot - MBBS Tutor")
# Custom Nav
with gr.Row(elem_id="nav_bar"):
btn_learn = gr.Button("π Learning Mode", variant="primary")
btn_viva = gr.Button("π― VIVA Training", variant="secondary")
btn_book = gr.Button("π Book Mode", variant="secondary")
# TABS Container (This solves the overlapping issue)
with gr.Tabs(elem_id="main_tabs") as tabs:
# TAB 1: LEARNING
with gr.TabItem("Learning", id="tab_learn"):
with gr.Row():
q_in = gr.Textbox(label="Anatomy Question", placeholder="e.g. Circle of Willis")
# Clickable Examples
gr.Examples(
examples=[
["Show me the Circle of Willis"],
["Brachial plexus anatomy"],
["Carpal bones arrangement"],
["Layers of the scalp"],
["Anatomy of the heart chambers"],
["Cranial nerves and their functions"],
["Structure of the kidney nephron"],
["Branches of the abdominal aorta"],
["Rotator cuff muscles"],
["Spinal cord cross section"],
["Femoral triangle anatomy"],
["Larynx cartilages and membranes"],
["Portal venous system"],
["Anatomy of the eyeball"],
["Bronchopulmonary segments"]
],
inputs=q_in
)
with gr.Row():
b_search = gr.Button("π Search", variant="primary")
b_to_viva = gr.Button("π― Start VIVA on this Topic", variant="secondary")
err_out = gr.Markdown()
with gr.Row():
info_out = gr.Markdown()
img_out = gr.Image(type="pil", label="Diagram")
# TAB 2: VIVA
with gr.TabItem("VIVA", id="tab_viva"):
v_status = gr.Markdown("Select a topic in Learning Mode or Book Mode first!")
with gr.Column(visible=False) as v_cont:
with gr.Row():
v_img = gr.Image(interactive=False, type="pil", label="Reference")
with gr.Column():
v_q_disp = gr.Markdown("Question...")
v_hint = gr.Markdown("Hint...")
v_audio = gr.Audio(autoplay=True, interactive=False)
v_ans = gr.Textbox(label="Answer", lines=3)
v_sub = gr.Button("Submit")
v_fb = gr.Markdown()
# TAB 3: BOOK
with gr.TabItem("Book", id="tab_book"):
bk_file = gr.File(label="Upload PDF", file_types=[".pdf"], type="binary")
bk_stat = gr.Markdown()
# Book State
bk_imgs = gr.State([])
bk_caps = gr.State([])
bk_txts = gr.State([])
bk_page_sel = gr.Dropdown(label="Select Page", interactive=False)
bk_view = gr.Image(label="Page View", type="pil")
bk_anl = gr.Markdown()
b_bk_viva = gr.Button("π― Start VIVA from Page", visible=False)
# Visitor Counter at the bottom
gr.HTML("""
<div style="text-align: center; padding: 20px; margin-top: 30px;">
<a href='http://www.freevisitorcounters.com'>more information</a>
<script type='text/javascript' src='https://www.freevisitorcounters.com/auth.php?id=87b94e1fdb825066c72a0b28d2edde7ede052535'></script>
<script type="text/javascript" src="https://www.freevisitorcounters.com/en/home/counter/1447474/t/5"></script>
</div>
""")
# --- EVENT HANDLERS ---
# 2. Navigation (Updates the Tabs 'selected' state)
btn_learn.click(lambda: gr.Tabs(selected="tab_learn"), outputs=tabs)
btn_viva.click(lambda: gr.Tabs(selected="tab_viva"), outputs=tabs)
btn_book.click(lambda: gr.Tabs(selected="tab_book"), outputs=tabs)
# 3. Learning Mode
def run_search(q):
img, txt, err = process_anatomy_query(q)
return img, txt, err, q, img, gr.update(interactive=True)
b_search.click(run_search, q_in, [img_out, info_out, err_out, cur_topic, cur_img, b_to_viva])
q_in.submit(run_search, q_in, [img_out, info_out, err_out, cur_topic, cur_img, b_to_viva])
# 4. Start VIVA (Learning Mode)
b_to_viva.click(
fn=lambda: gr.update(value="Generating...", interactive=False), outputs=b_to_viva
).then(
fn=start_viva_mode,
inputs=[cur_topic, cur_img, student_name],
outputs=[v_cont, v_status, v_img, v_q_disp, v_hint, v_ans, v_fb, v_sub, viva_qs, v_audio, gr.State()]
).then(
fn=lambda: (gr.Tabs(selected="tab_viva"), 0, gr.update(value="Start VIVA", interactive=True)),
outputs=[tabs, q_idx, b_to_viva]
)
# 5. VIVA Logic
v_sub.click(
fn=submit_viva_answer_logic,
inputs=[v_ans, viva_qs, q_idx, student_name],
outputs=[v_q_disp, v_hint, v_ans, v_fb, v_sub, q_idx, v_audio]
)
# 6. Book Mode
def on_upload(f):
data, msg = process_uploaded_book(f)
if not data: return [], [], [], gr.update(choices=[]), msg
imgs, caps, txts = zip(*data)
return imgs, caps, txts, gr.update(choices=list(caps), interactive=True), msg
bk_file.upload(on_upload, bk_file, [bk_imgs, bk_caps, bk_txts, bk_page_sel, bk_stat])
def on_page_sel(sel, imgs, caps, txts):
if not sel: return None, "", "", gr.update()
idx = caps.index(sel)
anl = analyze_book_image(imgs[idx], sel, txts[idx])
return imgs[idx], anl, f"Textbook: {sel}", gr.update(visible=True)
bk_page_sel.change(on_page_sel, [bk_page_sel, bk_imgs, bk_caps, bk_txts], [bk_view, bk_anl, cur_book_topic, b_bk_viva])
# 7. Start VIVA (Book Mode)
b_bk_viva.click(
fn=start_viva_mode,
inputs=[cur_book_topic, bk_view, student_name],
outputs=[v_cont, v_status, v_img, v_q_disp, v_hint, v_ans, v_fb, v_sub, viva_qs, v_audio, gr.State()]
).then(
fn=lambda: (gr.Tabs(selected="tab_viva"), 0),
outputs=[tabs, q_idx]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |