Spaces:
Sleeping
Sleeping
File size: 50,277 Bytes
7f6a022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 |
import gradio as gr
import requests
import os
from dotenv import load_dotenv
from io import BytesIO
from PIL import Image
import PyPDF2
from pdf2image import convert_from_path
import tempfile
import sqlite3
from datetime import datetime
# Load environment variables from .env file
load_dotenv()
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
HYPERBOLIC_API_KEY = os.getenv("HYPERBOLIC_API_KEY")
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
# Admin password
ADMIN_PASSWORD = "BT54iv!@"
# Database setup
DB_PATH = "students.db"
def init_database():
"""Initialize the SQLite database and create students table if it doesn't exist."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS students (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
medical_school TEXT NOT NULL,
year TEXT NOT NULL,
registration_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
conn.close()
def save_student(name, medical_school, year):
"""Save student information to the database."""
try:
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute(
"INSERT INTO students (name, medical_school, year) VALUES (?, ?, ?)",
(name, medical_school, year)
)
conn.commit()
conn.close()
return True
except Exception as e:
print(f"Error saving student: {e}")
return False
def get_all_students():
"""Retrieve all students from the database."""
try:
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT id, name, medical_school, year, registration_date FROM students ORDER BY registration_date DESC")
students = cursor.fetchall()
conn.close()
return students
except Exception as e:
print(f"Error retrieving students: {e}")
return []
# Initialize database on startup
init_database()
# Hyperbolic API configuration
HYPERBOLIC_API_URL = "https://api.hyperbolic.xyz/v1/chat/completions"
HYPERBOLIC_MODEL = "meta-llama/Llama-3.3-70B-Instruct"
# ElevenLabs API configuration
ELEVENLABS_API_URL = "https://api.elevenlabs.io/v1/text-to-speech"
# Using a standard "Professor" like voice (e.g., "Brian" - a deep, authoritative British voice, or similar)
# Voice ID for "Brian": nPczCjzI2devNBz1zQrb
ELEVENLABS_VOICE_ID = "nPczCjzI2devNBz1zQrb"
def generate_audio(text: str, student_name: str = None) -> str:
"""
Generate audio from text using ElevenLabs API.
If student_name is provided, prepends a personalized greeting.
Returns path to temporary audio file or None if failed.
"""
if not ELEVENLABS_API_KEY:
print("β οΈ ELEVENLABS_API_KEY is missing")
return None
if not text:
print("β οΈ No text provided for audio generation")
return None
# Add personalized greeting if student name is provided
if student_name:
text = f"Welcome to Viva, Doctor {student_name}, let's start. {text}"
print(f"Generating audio for text: {text[:50]}...")
try:
url = f"{ELEVENLABS_API_URL}/{ELEVENLABS_VOICE_ID}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": ELEVENLABS_API_KEY
}
data = {
"text": text,
"model_id": "eleven_turbo_v2",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
response = requests.post(url, json=data, headers=headers)
if response.status_code == 200:
# Save to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
f.write(response.content)
print(f"β
Audio generated successfully: {f.name}")
return f.name
else:
print(f"β ElevenLabs API Error ({response.status_code}): {response.text}")
return None
except Exception as e:
print(f"Error generating audio: {str(e)}")
return None
def is_anatomy_related(query: str) -> tuple[bool, str]:
"""
Validate if the query is anatomy-related using the LLM.
Returns (is_valid, message)
"""
validation_prompt = f"""You are an anatomy topic validator for medical students.
Determine if the following question is related to human anatomy ONLY.
Question: "{query}"
Respond with ONLY "YES" if it's about anatomy (structures, organs, systems, blood vessels, nerves, bones, muscles, etc.)
Respond with ONLY "NO" if it's not about anatomy (physiology, biochemistry, pharmacology, diseases, treatments, etc.)
Response:"""
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {HYPERBOLIC_API_KEY}"
}
payload = {
"model": HYPERBOLIC_MODEL,
"messages": [{"role": "user", "content": validation_prompt}],
"max_tokens": 10,
"temperature": 0.1
}
response = requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload, timeout=10)
response.raise_for_status()
result = response.json()
answer = result["choices"][0]["message"]["content"].strip().upper()
if "YES" in answer:
return True, ""
else:
return False, "β οΈ Please ask questions related to anatomy only. This question appears to be about other medical topics."
except Exception as e:
# If validation fails, allow the query but log the error
print(f"Validation error: {e}")
return True, ""
def search_anatomy_image(query: str) -> tuple[list, str]:
"""
Search for anatomy images using SERPAPI Google Images.
Returns (list_of_image_urls, error_message)
"""
try:
params = {
"engine": "google_images",
"q": f"{query} anatomy diagram",
"api_key": SERPAPI_KEY,
"num": 10, # Get more results for fallback
"safe": "active"
}
response = requests.get("https://serpapi.com/search", params=params, timeout=15)
response.raise_for_status()
data = response.json()
if "images_results" in data and len(data["images_results"]) > 0:
# Get multiple image URLs, filter out SVG files
image_urls = []
for img in data["images_results"]:
url = img.get("original", "")
# Skip SVG files and other problematic formats
if url and not url.lower().endswith('.svg'):
image_urls.append(url)
if image_urls:
return image_urls, ""
else:
return [], "No supported image formats found (SVG files excluded)."
else:
return [], "No images found for this anatomy topic."
except Exception as e:
return [], f"Error searching for images: {str(e)}"
def download_image(image_url: str) -> Image.Image:
"""
Download and return PIL Image from URL.
"""
try:
# Add headers to mimic a browser request and avoid 403 errors
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'image/avif,image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.9',
'Referer': 'https://www.google.com/'
}
response = requests.get(image_url, headers=headers, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content))
return img
except Exception as e:
raise Exception(f"Error downloading image: {str(e)}")
def generate_anatomy_info(query: str) -> str:
"""
Generate educational information about the anatomy topic using Hyperbolic API.
"""
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {HYPERBOLIC_API_KEY}"
}
prompt = f"""You are an expert anatomy professor teaching MBBS students. Provide a detailed, high-level educational summary about: {query}
Format your response with clear sections using these exact emoji icons:
π **Location & Definition:**
[Precise anatomical definition, location, and relations using standard medical terminology]
π **Key Anatomical Features:**
- [Detailed feature 1 (e.g., attachments, blood supply, innervation)]
- [Detailed feature 2]
- [Detailed feature 3]
π₯ **Clinical Significance:**
- [Clinical correlation 1 (e.g., pathologies, surgical relevance)]
- [Clinical correlation 2]
π **Related Structures:**
- [Related structure 1]
- [Related structure 2]
π‘ **Quick Memory Tip:**
[A high-yield mnemonic or tip for exams]
Keep it professional, accurate, and suitable for medical school level study. Use proper anatomical terminology throughout."""
payload = {
"model": HYPERBOLIC_MODEL,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 600,
"temperature": 0.7
}
response = requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload, timeout=20)
response.raise_for_status()
result = response.json()
info = result["choices"][0]["message"]["content"]
# Add prominent header to make it stand out
formatted_info = f"""## π Key Learning Points
{info}
---
πͺ **Study Tip:** Read through these points carefully, then test yourself with VIVA mode!"""
return formatted_info
except Exception as e:
return f"β οΈ Error generating information: {str(e)}"
def generate_viva_questions(topic: str) -> list:
"""
Generate 5 viva questions for the anatomy topic.
Returns list of question dictionaries with question, hint, and expected answer.
"""
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {HYPERBOLIC_API_KEY}"
}
prompt = f"""You are a strict but fair anatomy professor conducting a VIVA exam for final year MBBS students on: {topic}
Generate exactly 5 viva questions that test deep anatomical understanding, clinical application, and relations. For each question, provide:
1. The question (challenging, requiring synthesis of knowledge)
2. A helpful hint (guides thinking without giving the answer)
3. The expected key points in the answer (using proper terminology)
Format your response EXACTLY as follows:
Q1: [question]
HINT: [hint]
ANSWER: [expected answer key points]
Q2: [question]
HINT: [hint]
ANSWER: [expected answer key points]
... and so on for all 5 questions.
Make questions progressively harder. Start with detailed relations/supply, then move to complex clinical scenarios."""
payload = {
"model": HYPERBOLIC_MODEL,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 800,
"temperature": 0.7
}
response = requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload, timeout=25)
response.raise_for_status()
result = response.json()
content = result["choices"][0]["message"]["content"]
# Parse the questions
questions = []
lines = content.split('\n')
current_q = {}
for line in lines:
line = line.strip()
if line.startswith('Q') and ':' in line:
if current_q:
questions.append(current_q)
current_q = {'question': line.split(':', 1)[1].strip()}
elif line.startswith('HINT:'):
current_q['hint'] = line.split(':', 1)[1].strip()
elif line.startswith('ANSWER:'):
current_q['answer'] = line.split(':', 1)[1].strip()
if current_q:
questions.append(current_q)
return questions[:5] # Ensure exactly 5 questions
except Exception as e:
print(f"Error generating viva questions: {e}")
return []
def evaluate_viva_answer(question: str, student_answer: str, expected_answer: str) -> tuple[str, str]:
"""
Evaluate student's answer and provide feedback.
Returns (feedback, score_emoji)
"""
if not student_answer.strip():
return "βΈοΈ Please provide an answer to continue.", "βΈοΈ"
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {HYPERBOLIC_API_KEY}"
}
prompt = f"""You are an anatomy professor evaluating an MBBS student's VIVA answer. Expect high standards and precise terminology.
Question: {question}
Expected key points: {expected_answer}
Student's answer: {student_answer}
Provide feedback in this EXACT format:
[First, write one sentence evaluating the precision and depth of the answer]
β
**What was correct:**
[List correct points. Praise use of proper terminology.]
β **What was missing:**
[List missing key points, relations, or clinical aspects. Be specific about missing terminology.]
**Score:** [Choose: DISTINCTION, PASS, BORDERLINE, or FAIL]
[End with a constructive comment on how to improve to a professional medical standard]
Be professional and constructive. Demand accuracy."""
payload = {
"model": HYPERBOLIC_MODEL,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 400,
"temperature": 0.6
}
response = requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload, timeout=15)
response.raise_for_status()
result = response.json()
feedback = result["choices"][0]["message"]["content"]
# Determine emoji and encouragement based on feedback content
feedback_upper = feedback.upper()
if "DISTINCTION" in feedback_upper:
emoji = "π"
encouragement = "\n\nπ **Outstanding!** Distinction level answer! You're mastering this topic!"
elif "PASS" in feedback_upper:
emoji = "β
"
encouragement = "\n\nπ **Good Pass!** Solid understanding. Review the finer details to reach distinction level."
elif "BORDERLINE" in feedback_upper:
emoji = "β οΈ"
encouragement = "\n\nπͺ **Borderline.** You have the basics, but need more precision with terminology."
else:
emoji = "π"
encouragement = "\n\nπ± **Keep studying.** Focus on the key anatomical relations and clinical points."
# Format the complete feedback
formatted_feedback = f"{emoji} **VIVA Feedback:**\n\n{feedback}{encouragement}\n\n---\n\nπ **Reference Answer:**\n{expected_answer}"
return formatted_feedback, emoji
except Exception as e:
return f"β οΈ Could not evaluate answer: {str(e)}", "β οΈ"
def process_anatomy_query(query: str) -> tuple:
"""
Main function to process anatomy queries.
Returns (image, info_text, error_message)
"""
if not query.strip():
return None, "", "Please enter a question about anatomy."
# Validate if query is anatomy-related
is_valid, validation_msg = is_anatomy_related(query)
if not is_valid:
return None, "", validation_msg
# Search for images
image_urls, img_error = search_anatomy_image(query)
# Generate educational information
info = generate_anatomy_info(query)
# Try to download images from the list until one succeeds
image = None
download_error = ""
if image_urls:
for url in image_urls[:5]: # Try up to 5 images
try:
image = download_image(url)
download_error = "" # Success!
break # Stop trying once we get a valid image
except Exception as e:
download_error = str(e)
continue # Try next image
if not image and download_error:
img_error = f"Could not download images. Last error: {download_error}"
# Prepare result
error_message = ""
if img_error:
error_message = f"β οΈ {img_error}"
return image, info, error_message
# Book Learning Mode Functions
def process_uploaded_book(pdf_file):
"""
Process uploaded PDF book and extract all pages with images and text.
Returns (list_of_tuples, status_message) where tuple is (image, caption, text)
"""
if pdf_file is None:
return [], "Please upload a PDF file."
try:
extracted_data = []
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(pdf_file)
tmp_path = tmp_file.name
try:
# Convert all pages to images (this might take a while for large books)
images = convert_from_path(tmp_path, dpi=150)
# Extract text from pages
reader = PyPDF2.PdfReader(tmp_path)
for i, image in enumerate(images):
# Get text for this page if available
text_content = ""
if i < len(reader.pages):
try:
text_content = reader.pages[i].extract_text()
except:
text_content = "Could not extract text from this page."
# Limit text length to avoid token limits
if len(text_content) > 2000:
text_content = text_content[:2000] + "..."
extracted_data.append((image, f"Page {i+1}", text_content))
status = f"β
Successfully processed {len(extracted_data)} pages from your anatomy textbook!"
return extracted_data, status
finally:
# Clean up temp file
if os.path.exists(tmp_path):
os.unlink(tmp_path)
except Exception as e:
return [], f"β οΈ Error processing PDF: {str(e)}"
def analyze_book_image(image, page_info, page_text=""):
"""
Analyze selected image from book using AI to extract anatomical information.
Returns formatted explanation text.
"""
if image is None:
return "Please select an image from the book."
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {HYPERBOLIC_API_KEY}"
}
# Include extracted text in the prompt context
context_text = f"Page Content:\n{page_text}" if page_text else "No text extracted from this page."
prompt = f"""You are an expert anatomy professor helping MBBS students analyze their textbook content.
A student is looking at {page_info} of their anatomy textbook.
{context_text}
Based on the text content above, provide a high-level medical analysis:
## π Page Overview
[Summarize the key anatomical topic using standard medical terminology]
## π Key Concepts Explained
[Explain the concepts in detail, focusing on relations, blood supply, nerve supply, and lymphatic drainage where applicable]
## π₯ Clinical Relevance
[Detailed clinical correlations, surgical landmarks, or pathological conditions mentioned or relevant]
## π‘ Study Tips
[High-yield memory aids for medical exams]
## β Self-Test Questions (MBBS Level)
1. [Question based on the page text]
2. [Question based on the page text]
...
15. [Question based on the page text]
(Provide at least 15 distinct, challenging questions covering detailed anatomy, relations, and clinical application)
Be professional, accurate, and suitable for medical school level study."""
payload = {
"model": HYPERBOLIC_MODEL,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 1200,
"temperature": 0.5
}
response = requests.post(HYPERBOLIC_API_URL, headers=headers, json=payload, timeout=25)
response.raise_for_status()
result = response.json()
explanation = result["choices"][0]["message"]["content"]
formatted_output = f"""# π Textbook Analysis: {page_info}
{explanation}
---
πͺ **Next Steps:** Mastered this page? Try the VIVA mode to test yourself!"""
return formatted_output
except Exception as e:
return f"β οΈ Error analyzing image: {str(e)}"
# VIVA Mode Handler Functions
def start_viva_mode(topic, image, student_name=""):
"""Initialize VIVA mode with questions."""
if not topic or not image:
return (
gr.update(visible=False), # viva_container
"Please learn about a topic first before starting VIVA mode!", # viva_status
None, None, None, None, None, None, [], None, student_name # other outputs
)
questions = generate_viva_questions(topic)
if not questions or len(questions) == 0:
return (
gr.update(visible=False),
"Error generating VIVA questions. Please try again.",
None, None, None, None, None, gr.update(interactive=False), [], None, student_name
)
# Start with question 1
q1 = questions[0]
# Generate audio for first question with student name
audio_path = generate_audio(q1['question'], student_name if student_name else None)
return (
gr.update(visible=True), # Show VIVA container
f"**VIVA MODE ACTIVE** π\nTopic: {topic}", # viva_status
image, # viva_image
f"### Question 1 of 5\n\n**{q1['question']}**", # current_question_display
f"π‘ **Hint:** {q1.get('hint', 'Think about the key anatomical features.')}", # hint_display
"", # Clear answer input
"", # Clear feedback
gr.update(interactive=True, value="Submit Answer"), # Enable submit button
questions, # Store questions in state
audio_path, # Return audio path
student_name # Return student name to maintain in state
)
# Wrapper to start VIVA with personalized greeting
def start_viva_with_name(name, topic, image):
viva_container_out, viva_status_out, viva_image_out, cur_q_disp, hint_disp, stu_ans, fb_disp, sub_btn, viva_q_state, q_audio, student_name_out = start_viva_mode(topic, image, name)
greeting = f"Doctor {name}, let's go to VIVA!"
# Add greeting as separate markdown component above question
viva_greeting_out = greeting
return viva_container_out, viva_status_out, viva_image_out, cur_q_disp, hint_disp, stu_ans, fb_disp, sub_btn, viva_q_state, q_audio, viva_greeting_out, student_name_out
def submit_viva_answer(answer, questions, current_q_idx, student_name=""):
"""Process student's answer and move to next question."""
if not questions or current_q_idx >= len(questions):
return ("VIVA Complete!", "", "", gr.update(interactive=False), current_q_idx, None)
q = questions[current_q_idx]
feedback_text, emoji = evaluate_viva_answer(q['question'], answer, q.get('answer', ''))
# Move to next question
next_idx = current_q_idx + 1
if next_idx < len(questions):
next_q = questions[next_idx]
next_question = f"### Question {next_idx + 1} of 5\n\n**{next_q['question']}**"
next_hint = f"π‘ **Hint:** {next_q.get('hint', 'Think carefully about the anatomical relationships.')}"
# Generate audio for next question with student name
audio_path = generate_audio(next_q['question'], student_name if student_name else None)
return (
next_question, # Show next question
next_hint, # Show next hint
"", # Clear answer box
feedback_text, # Show feedback for current answer
gr.update(interactive=True, value="Submit Answer"), # Keep button enabled
next_idx, # Update question index
audio_path # Play next question audio
)
else:
# VIVA complete
completion_msg = f"### π VIVA Complete!\n\nYou've answered all 5 questions. Great job on completing your anatomy VIVA training!"
return (
completion_msg,
"", # Clear hint
"", # Clear answer
feedback_text, # Final feedback
gr.update(interactive=False, value="VIVA Complete"),
next_idx,
None # No audio
)
# Create Gradio interface
with gr.Blocks(title="AnatomyBot - MBBS Anatomy Tutor") as demo:
# State variables
student_name_state = gr.State("")
viva_questions_state = gr.State([])
current_question_idx = gr.State(0)
current_topic = gr.State("")
current_image_state = gr.State(None)
is_registered = gr.State(False) # Track if user has registered
# Add custom CSS styling via HTML
gr.HTML("""
<style>
/* Modal backdrop using body::after when modal exists and is visible */
body:has(#registration_modal:not([style*="display: none"]))::after {
content: '';
position: fixed;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: rgba(0, 0, 0, 0.6);
backdrop-filter: blur(8px);
-webkit-backdrop-filter: blur(8px);
z-index: 999;
pointer-events: all;
}
/* Modal container */
#registration_modal {
position: fixed !important;
top: 50% !important;
left: 50% !important;
transform: translate(-50%, -50%) !important;
z-index: 1000 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8f9fa 100%) !important;
padding: 2.5rem !important;
border-radius: 20px !important;
border: 3px solid rgba(255,107,53,0.5) !important;
box-shadow:
0 10px 40px rgba(0,0,0,0.3),
0 0 20px rgba(255,107,53,0.2),
inset 0 1px 0 rgba(255,255,255,0.9) !important;
max-width: 600px !important;
width: 90% !important;
animation: modalSlideIn 0.3s ease-out !important;
}
/* Modal animation */
@keyframes modalSlideIn {
from {
opacity: 0;
transform: translate(-50%, -60%);
}
to {
opacity: 1;
transform: translate(-50%, -50%);
}
}
/* Beautify modal content */
#registration_modal h1 {
color: #2c3e50 !important;
margin-bottom: 0.5rem !important;
font-size: 2rem !important;
}
#registration_modal h3 {
color: #7f8c8d !important;
font-weight: 400 !important;
font-size: 1.1rem !important;
}
/* ========================================
RESPONSIVE NAVIGATION BAR FIX
Ensures navigation stays horizontal in iframe/HF Spaces
======================================== */
/* Force navigation bar to stay horizontal */
#nav_bar {
display: flex !important;
flex-direction: row !important;
flex-wrap: nowrap !important;
gap: 0.5rem !important;
width: 100% !important;
overflow-x: auto !important;
overflow-y: hidden !important;
}
/* Equal-width buttons that shrink gracefully */
#nav_bar button {
flex: 1 1 0 !important;
min-width: 0 !important;
white-space: nowrap !important;
overflow: hidden !important;
text-overflow: ellipsis !important;
font-size: 0.875rem !important;
padding: 0.5rem 0.75rem !important;
}
/* Responsive adjustments for narrower viewports */
@media (max-width: 900px) {
#nav_bar button {
font-size: 0.75rem !important;
padding: 0.4rem 0.5rem !important;
}
}
@media (max-width: 600px) {
#nav_bar button {
font-size: 0.7rem !important;
padding: 0.3rem 0.4rem !important;
}
/* Hide emojis on very small screens */
#nav_bar button::before {
content: none !important;
}
}
</style>
""")
# Main Application (always visible now)
with gr.Column() as main_app:
gr.Markdown(
"""
# π©Ί AnatomyBot - Your MBBS Anatomy Tutor
Master anatomy through AI-powered learning and interactive VIVA practice!
"""
)
# Display student name
student_name_display = gr.Markdown("")
# Custom Navigation Bar
with gr.Row(elem_id="nav_bar"):
nav_learning_btn = gr.Button("π Learning Mode", variant="primary", scale=1)
nav_viva_btn = gr.Button("π― VIVA Training Mode", variant="secondary", scale=1)
nav_book_btn = gr.Button("π Book Learning Mode", variant="secondary", scale=1)
nav_admin_btn = gr.Button("π Admin Panel", variant="secondary", scale=1)
# LEARNING MODE COLUMN
with gr.Column(visible=True, elem_id="learning_col") as learning_col:
# Search and examples at the top
with gr.Row():
query_input = gr.Textbox(
label="Ask an Anatomy Question",
placeholder="e.g., Show me the Circle of Willis",
lines=2
)
# Examples
gr.Examples(
examples=[
["Show me the Circle of Willis"],
["Brachial plexus anatomy"],
["Carpal bones arrangement"],
["Layers of the scalp"],
["Anatomy of the heart chambers"],
["Cranial nerves and their functions"],
["Structure of the kidney nephron"],
["Branches of the abdominal aorta"],
["Rotator cuff muscles"],
["Spinal cord cross section"],
["Femoral triangle anatomy"],
["Larynx cartilages and membranes"],
["Portal venous system"],
["Anatomy of the eyeball"],
["Bronchopulmonary segments"]
],
inputs=query_input
)
with gr.Row():
submit_btn = gr.Button("π Search & Learn", variant="primary", size="lg")
start_viva_btn = gr.Button("π― Start VIVA Training", variant="secondary", size="lg")
error_output = gr.Markdown(label="Status")
# Main content: Key Learning Points (left) and Anatomy Diagram (right)
with gr.Row():
with gr.Column(scale=1):
info_output = gr.Markdown(label="π Key Learning Points")
with gr.Column(scale=1):
image_output = gr.Image(label="πΌοΈ Anatomy Diagram", type="pil")
# VIVA MODE COLUMN
with gr.Column(visible=False, elem_id="viva_col") as viva_col:
viva_status = gr.Markdown("Click 'Start VIVA Training' from Learning Mode after studying a topic!")
# Additional greeting component (initially hidden)
viva_greeting = gr.Markdown("", visible=False)
with gr.Column(visible=False) as viva_container:
with gr.Row():
with gr.Column(scale=1):
viva_image = gr.Image(label="Reference Image", type="pil", interactive=False)
with gr.Column(scale=2):
current_question_display = gr.Markdown("### Question will appear here")
hint_display = gr.Markdown("π‘ Hint will appear here")
# Audio player for question
question_audio = gr.Audio(label="π Listen to Question", autoplay=True, interactive=False)
student_answer = gr.Textbox(
label="Your Answer",
placeholder="Type your answer here...",
lines=4
)
submit_answer_btn = gr.Button("Submit Answer", variant="primary")
feedback_display = gr.Markdown("Feedback will appear here after you submit your answer")
# BOOK LEARNING MODE COLUMN
with gr.Column(visible=False, elem_id="book_col") as book_col:
# Upload PDF
pdf_upload = gr.File(label="Upload Anatomy Textbook (PDF)", file_types=[".pdf"], type="binary")
upload_status = gr.Markdown()
# State to hold extracted images, captions, and text
book_images_state = gr.State([])
page_captions_state = gr.State([])
page_texts_state = gr.State([])
# Dropdown to select a page after processing
page_dropdown = gr.Dropdown(label="Select Page", choices=[], interactive=False)
# Display selected page image
selected_page_image = gr.Image(label="Selected Page", type="pil")
# Analysis output
analysis_output = gr.Markdown(label="Page Analysis")
# Button to start VIVA from this page
start_viva_book_btn = gr.Button("π― Start VIVA Training from this Page", variant="primary", visible=False)
# Process upload
def handle_book_upload(pdf_bytes):
extracted_data, status_msg = process_uploaded_book(pdf_bytes)
if not extracted_data:
# No data extracted
return [], status_msg, [], [], gr.update(choices=[], interactive=False), None, ""
# Separate images, captions, and text
img_list = [item[0] for item in extracted_data]
caps = [item[1] for item in extracted_data]
texts = [item[2] for item in extracted_data]
# Update dropdown with captions and enable it
dropdown_update = gr.update(choices=caps, interactive=True)
return img_list, status_msg, caps, texts, dropdown_update, None, ""
pdf_upload.upload(
fn=handle_book_upload,
inputs=[pdf_upload],
outputs=[book_images_state, upload_status, page_captions_state, page_texts_state, page_dropdown, selected_page_image, analysis_output]
)
# When a page is selected, show image and analysis
def show_page_analysis(selected_caption, images, captions, texts):
if not selected_caption:
return None, ""
# Find index
try:
idx = captions.index(selected_caption)
except ValueError:
return None, ""
img = images[idx]
text = texts[idx] if idx < len(texts) else ""
analysis = analyze_book_image(img, selected_caption, text)
# Construct a topic string for VIVA
viva_topic = f"Anatomy of {selected_caption} (from textbook)"
return img, analysis, viva_topic, gr.update(visible=True)
# Hidden state to store current page topic for VIVA
current_book_topic = gr.State("")
page_dropdown.change(
fn=show_page_analysis,
inputs=[page_dropdown, book_images_state, page_captions_state, page_texts_state],
outputs=[selected_page_image, analysis_output, current_book_topic, start_viva_book_btn]
)
# Start VIVA from Book Mode handler moved to end of file to resolve NameError
# ADMIN PANEL COLUMN
with gr.Column(visible=False, elem_id="admin_col") as admin_col:
gr.Markdown("## Admin Panel - Student Database")
gr.Markdown("Enter the admin password to view registered students.")
# Password input
with gr.Row():
admin_password_input = gr.Textbox(
label="Admin Password",
placeholder="Enter admin password",
type="password",
scale=2
)
admin_login_btn = gr.Button("π Login", variant="primary", scale=1)
admin_status = gr.Markdown("")
# Admin content (hidden until authenticated)
with gr.Column(visible=False) as admin_content:
gr.Markdown("### π Registered Students")
admin_stats = gr.Markdown("")
with gr.Row():
refresh_btn = gr.Button("π Refresh Data", variant="secondary")
logout_btn = gr.Button("πͺ Logout", variant="secondary")
students_table = gr.Dataframe(
headers=["ID", "Name", "Medical School", "Year", "Registration Date"],
label="Students Database",
interactive=False,
wrap=True
)
# Registration Modal Popup (shown on first load)
with gr.Column(visible=True, elem_id="registration_modal") as registration_modal:
with gr.Row():
with gr.Column(scale=1):
pass # Spacer
with gr.Column(scale=2):
gr.Markdown(
"""
# π¨ββοΈ Welcome to AnatomyBot!
### Please enter your information to get started
"""
)
modal_name_input = gr.Textbox(
label="Your Name",
placeholder="Enter your name",
lines=1
)
modal_school_input = gr.Textbox(
label="Medical School",
placeholder="Enter your medical school",
lines=1
)
modal_year_input = gr.Dropdown(
label="Year/Level",
choices=["MBBS 1st Year", "MBBS 2nd Year", "MBBS 3rd Year", "MBBS Final Year", "Intern"],
value=None
)
modal_submit_btn = gr.Button(
"β
Start Learning",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
pass # Spacer
# Event Handlers
# Navigation Logic - change_view function returns exactly 4 values for 4 columns
def change_view(target_view):
"""
Handle navigation between views with mutual exclusivity.
Args:
target_view: The view to display ("learning", "viva", "book", or "admin")
Returns:
Tuple of 4 gr.update() objects for [learning_col, viva_col, book_col, admin_col]
Exactly ONE will have visible=True, the rest will have visible=False
"""
if target_view == "learning":
return (
gr.update(visible=True), # learning_col
gr.update(visible=False), # viva_col
gr.update(visible=False), # book_col
gr.update(visible=False) # admin_col
)
elif target_view == "viva":
return (
gr.update(visible=False), # learning_col
gr.update(visible=True), # viva_col
gr.update(visible=False), # book_col
gr.update(visible=False) # admin_col
)
elif target_view == "book":
return (
gr.update(visible=False), # learning_col
gr.update(visible=False), # viva_col
gr.update(visible=True), # book_col
gr.update(visible=False) # admin_col
)
elif target_view == "admin":
return (
gr.update(visible=False), # learning_col
gr.update(visible=False), # viva_col
gr.update(visible=False), # book_col
gr.update(visible=True) # admin_col
)
# Default to learning mode if invalid target
return (
gr.update(visible=True), # learning_col
gr.update(visible=False), # viva_col
gr.update(visible=False), # book_col
gr.update(visible=False) # admin_col
)
# Bind Navigation Buttons - Apply change_view logic to all four top buttons
nav_learning_btn.click(
fn=lambda: change_view("learning"),
outputs=[learning_col, viva_col, book_col, admin_col]
)
nav_viva_btn.click(
fn=lambda: change_view("viva"),
outputs=[learning_col, viva_col, book_col, admin_col]
)
nav_book_btn.click(
fn=lambda: change_view("book"),
outputs=[learning_col, viva_col, book_col, admin_col]
)
nav_admin_btn.click(
fn=lambda: change_view("admin"),
outputs=[learning_col, viva_col, book_col, admin_col]
)
# Welcome Screen Handler (now for modal)
def handle_modal_submit(name, medical_school, year):
"""Handle registration modal submission."""
if not name or not name.strip():
return gr.update(), gr.update(), "" # Don't proceed if name is empty
if not medical_school or not medical_school.strip():
return gr.update(), gr.update(), "" # Don't proceed if medical school is empty
if not year:
return gr.update(), gr.update(), "" # Don't proceed if year is not selected
# Save to database
save_student(name.strip(), medical_school.strip(), year)
greeting = f"**Welcome, Doctor {name}!** π from {medical_school} ({year})"
return (
gr.update(visible=False), # Hide modal
greeting, # Display greeting
name # Store name in state
)
modal_submit_btn.click(
fn=handle_modal_submit,
inputs=[modal_name_input, modal_school_input, modal_year_input],
outputs=[registration_modal, student_name_display, student_name_state],
js="""
(name, school, year) => {
if (name && name.trim() !== "" && school && school.trim() !== "" && year) {
const modal = document.getElementById('registration_modal');
if (modal) {
modal.style.display = 'none';
}
}
}
"""
)
# Event handlers for Learning Mode
def handle_query(query):
"""Handle learning mode query and store topic/image."""
img, info, error = process_anatomy_query(query)
# Reset Start VIVA button
viva_btn_update = gr.update(value="π― Start VIVA Training", interactive=True)
return img, info, error, query, img, viva_btn_update # Return topic, image, and button update
submit_btn.click(
fn=handle_query,
inputs=[query_input],
outputs=[image_output, info_output, error_output, current_topic, current_image_state, start_viva_btn]
)
query_input.submit(
fn=handle_query,
inputs=[query_input],
outputs=[image_output, info_output, error_output, current_topic, current_image_state, start_viva_btn]
)
# Start VIVA Mode - Directly start with pre-collected name
start_viva_btn.click(
fn=lambda: gr.update(value="β³ Processing VIVA Question...", interactive=False),
outputs=[start_viva_btn]
).then(
fn=lambda name, topic, image: start_viva_mode(topic, image, name),
inputs=[student_name_state, current_topic, current_image_state],
outputs=[
viva_container, viva_status, viva_image,
current_question_display, hint_display,
student_answer, feedback_display, submit_answer_btn,
viva_questions_state,
question_audio, # Output audio
student_name_state # Return student name (unchanged)
]
).then(
fn=lambda: change_view("viva"),
outputs=[learning_col, viva_col, book_col, admin_col]
).then(
fn=lambda: gr.update(value="π― Start VIVA Training", interactive=True), # Reset button
outputs=[start_viva_btn]
).then(
fn=lambda: 0, # Reset question index
outputs=[current_question_idx]
)
# Submit VIVA Answer
submit_answer_btn.click(
fn=submit_viva_answer,
inputs=[student_answer, viva_questions_state, current_question_idx, student_name_state],
outputs=[
current_question_display, hint_display, student_answer,
feedback_display, submit_answer_btn, current_question_idx,
question_audio # Output audio for next question
]
)
# Admin Panel Handlers
def admin_login(password):
"""Verify admin password and show admin content."""
if password == ADMIN_PASSWORD:
students = get_all_students()
total_students = len(students)
stats = f"**Total Registered Students:** {total_students}"
return (
gr.update(value="β
Login successful!", visible=True),
gr.update(visible=True), # Show admin content
stats,
students
)
else:
return (
gr.update(value="β Invalid password. Access denied.", visible=True),
gr.update(visible=False), # Hide admin content
"",
[]
)
def admin_logout():
"""Logout from admin panel."""
return (
gr.update(value=""), # Clear password
gr.update(value=""), # Clear status
gr.update(visible=False), # Hide admin content
"", # Clear stats
[] # Clear table
)
def refresh_students():
"""Refresh the students table."""
students = get_all_students()
total_students = len(students)
stats = f"**Total Registered Students:** {total_students}"
return stats, students
admin_login_btn.click(
fn=admin_login,
inputs=[admin_password_input],
outputs=[admin_status, admin_content, admin_stats, students_table]
)
admin_password_input.submit(
fn=admin_login,
inputs=[admin_password_input],
outputs=[admin_status, admin_content, admin_stats, students_table]
)
logout_btn.click(
fn=admin_logout,
outputs=[admin_password_input, admin_status, admin_content, admin_stats, students_table]
)
refresh_btn.click(
fn=refresh_students,
outputs=[admin_stats, students_table]
)
# Start VIVA from Book Mode - Use pre-collected name (Moved here to ensure all columns are defined)
start_viva_book_btn.click(
fn=lambda name, topic, image: start_viva_with_name(name, topic, image),
inputs=[student_name_state, current_book_topic, selected_page_image],
outputs=[
viva_container, viva_status, viva_image,
current_question_display, hint_display,
student_answer, feedback_display, submit_answer_btn,
viva_questions_state,
question_audio, viva_greeting, student_name_state
]
).then(
fn=lambda: change_view("viva"),
outputs=[learning_col, viva_col, book_col, admin_col]
).then(
fn=lambda: 0,
outputs=[current_question_idx]
)
if __name__ == "__main__":
# Check if API keys are configured
if not SERPAPI_KEY or SERPAPI_KEY == "your_serpapi_key_here":
print("β οΈ WARNING: SERPAPI_KEY not configured in .env file")
if not HYPERBOLIC_API_KEY or HYPERBOLIC_API_KEY == "your_hyperbolic_api_key_here":
print("β οΈ WARNING: HYPERBOLIC_API_KEY not configured in .env file")
# Use environment variable for port, default to 7860 for HF Spaces
port = int(os.getenv("GRADIO_SERVER_PORT", "7860"))
demo.launch(server_name="0.0.0.0", server_port=port)
# Rebuild trigger
|