error handling in Gemini call
Browse files- library.ipynb +5 -2
- test.ipynb +0 -367
library.ipynb
CHANGED
|
@@ -24,8 +24,11 @@
|
|
| 24 |
" # return response\n",
|
| 25 |
" genai.configure(api_key=key)\n",
|
| 26 |
" model = genai.GenerativeModel('gemini-pro')\n",
|
| 27 |
-
"
|
| 28 |
-
"
|
|
|
|
|
|
|
|
|
|
| 29 |
]
|
| 30 |
},
|
| 31 |
{
|
|
|
|
| 24 |
" # return response\n",
|
| 25 |
" genai.configure(api_key=key)\n",
|
| 26 |
" model = genai.GenerativeModel('gemini-pro')\n",
|
| 27 |
+
" try:\n",
|
| 28 |
+
" response = model.generate_content(text)\n",
|
| 29 |
+
" except Exception as e:\n",
|
| 30 |
+
" return -1,str(e)\n",
|
| 31 |
+
" return 0,response.text"
|
| 32 |
]
|
| 33 |
},
|
| 34 |
{
|
test.ipynb
DELETED
|
@@ -1,367 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {
|
| 7 |
-
"tags": []
|
| 8 |
-
},
|
| 9 |
-
"outputs": [],
|
| 10 |
-
"source": [
|
| 11 |
-
"import requests\n",
|
| 12 |
-
"import json\n",
|
| 13 |
-
"from urllib.request import urlretrieve\n",
|
| 14 |
-
"import pandas as pd\n",
|
| 15 |
-
"import time\n",
|
| 16 |
-
"from allkeys import OPENAIKEY, GEMENIKEY"
|
| 17 |
-
]
|
| 18 |
-
},
|
| 19 |
-
{
|
| 20 |
-
"cell_type": "code",
|
| 21 |
-
"execution_count": null,
|
| 22 |
-
"metadata": {},
|
| 23 |
-
"outputs": [],
|
| 24 |
-
"source": [
|
| 25 |
-
"import anvil.server\n",
|
| 26 |
-
"anvil.server.connect('PLMOIU5VCGGUOJH2XORIBWV3-ZXZVFLWX7QFIIAF4')"
|
| 27 |
-
]
|
| 28 |
-
},
|
| 29 |
-
{
|
| 30 |
-
"cell_type": "code",
|
| 31 |
-
"execution_count": null,
|
| 32 |
-
"metadata": {},
|
| 33 |
-
"outputs": [],
|
| 34 |
-
"source": [
|
| 35 |
-
"def fetch_result(task_id):\n",
|
| 36 |
-
" while True:\n",
|
| 37 |
-
" result=anvil.server.call('poll',task_id)\n",
|
| 38 |
-
" if result!='In Progress' or result=='No such task': break\n",
|
| 39 |
-
" else: \n",
|
| 40 |
-
" time.sleep(1)\n",
|
| 41 |
-
" print(result)\n",
|
| 42 |
-
" print(result)\n",
|
| 43 |
-
" return result"
|
| 44 |
-
]
|
| 45 |
-
},
|
| 46 |
-
{
|
| 47 |
-
"cell_type": "code",
|
| 48 |
-
"execution_count": null,
|
| 49 |
-
"metadata": {},
|
| 50 |
-
"outputs": [],
|
| 51 |
-
"source": [
|
| 52 |
-
"text='write a python function to compute the nth digit of pi'\n",
|
| 53 |
-
"model='gpt-3.5-turbo'"
|
| 54 |
-
]
|
| 55 |
-
},
|
| 56 |
-
{
|
| 57 |
-
"cell_type": "code",
|
| 58 |
-
"execution_count": null,
|
| 59 |
-
"metadata": {},
|
| 60 |
-
"outputs": [],
|
| 61 |
-
"source": [
|
| 62 |
-
"task_id=anvil.server.call('launch','call_gemini',text,GEMENIKEY)"
|
| 63 |
-
]
|
| 64 |
-
},
|
| 65 |
-
{
|
| 66 |
-
"cell_type": "code",
|
| 67 |
-
"execution_count": null,
|
| 68 |
-
"metadata": {},
|
| 69 |
-
"outputs": [],
|
| 70 |
-
"source": [
|
| 71 |
-
"task_id=anvil.server.call('launch','call_gpt',text,OPENAIKEY,model)"
|
| 72 |
-
]
|
| 73 |
-
},
|
| 74 |
-
{
|
| 75 |
-
"cell_type": "code",
|
| 76 |
-
"execution_count": null,
|
| 77 |
-
"metadata": {},
|
| 78 |
-
"outputs": [],
|
| 79 |
-
"source": [
|
| 80 |
-
"fetch_result(task_id)"
|
| 81 |
-
]
|
| 82 |
-
},
|
| 83 |
-
{
|
| 84 |
-
"cell_type": "code",
|
| 85 |
-
"execution_count": null,
|
| 86 |
-
"metadata": {},
|
| 87 |
-
"outputs": [],
|
| 88 |
-
"source": [
|
| 89 |
-
"print(result)"
|
| 90 |
-
]
|
| 91 |
-
},
|
| 92 |
-
{
|
| 93 |
-
"cell_type": "code",
|
| 94 |
-
"execution_count": null,
|
| 95 |
-
"metadata": {},
|
| 96 |
-
"outputs": [],
|
| 97 |
-
"source": [
|
| 98 |
-
"print(result[1],end='\\n')"
|
| 99 |
-
]
|
| 100 |
-
},
|
| 101 |
-
{
|
| 102 |
-
"cell_type": "code",
|
| 103 |
-
"execution_count": null,
|
| 104 |
-
"metadata": {},
|
| 105 |
-
"outputs": [],
|
| 106 |
-
"source": [
|
| 107 |
-
"import pathlib\n",
|
| 108 |
-
"import textwrap\n",
|
| 109 |
-
"from IPython.display import display\n",
|
| 110 |
-
"from IPython.display import Markdown\n",
|
| 111 |
-
"\n",
|
| 112 |
-
"def to_markdown(text):\n",
|
| 113 |
-
" text = text.replace('•', ' *')\n",
|
| 114 |
-
" return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))"
|
| 115 |
-
]
|
| 116 |
-
},
|
| 117 |
-
{
|
| 118 |
-
"cell_type": "code",
|
| 119 |
-
"execution_count": null,
|
| 120 |
-
"metadata": {},
|
| 121 |
-
"outputs": [],
|
| 122 |
-
"source": [
|
| 123 |
-
"prompt='write code that defines a transformer network from scratch in pytorch'"
|
| 124 |
-
]
|
| 125 |
-
},
|
| 126 |
-
{
|
| 127 |
-
"cell_type": "code",
|
| 128 |
-
"execution_count": null,
|
| 129 |
-
"metadata": {},
|
| 130 |
-
"outputs": [],
|
| 131 |
-
"source": [
|
| 132 |
-
"response=anvil.server.call('call_gemini',prompt)"
|
| 133 |
-
]
|
| 134 |
-
},
|
| 135 |
-
{
|
| 136 |
-
"cell_type": "code",
|
| 137 |
-
"execution_count": null,
|
| 138 |
-
"metadata": {},
|
| 139 |
-
"outputs": [],
|
| 140 |
-
"source": [
|
| 141 |
-
"anvil.server.call('encode_anvil',prompt)"
|
| 142 |
-
]
|
| 143 |
-
},
|
| 144 |
-
{
|
| 145 |
-
"cell_type": "code",
|
| 146 |
-
"execution_count": null,
|
| 147 |
-
"metadata": {},
|
| 148 |
-
"outputs": [],
|
| 149 |
-
"source": [
|
| 150 |
-
"to_markdown(response)"
|
| 151 |
-
]
|
| 152 |
-
},
|
| 153 |
-
{
|
| 154 |
-
"cell_type": "code",
|
| 155 |
-
"execution_count": null,
|
| 156 |
-
"metadata": {},
|
| 157 |
-
"outputs": [],
|
| 158 |
-
"source": [
|
| 159 |
-
"anvil.server.call('encode_anvil','I am a robot')[0]"
|
| 160 |
-
]
|
| 161 |
-
},
|
| 162 |
-
{
|
| 163 |
-
"cell_type": "code",
|
| 164 |
-
"execution_count": null,
|
| 165 |
-
"metadata": {},
|
| 166 |
-
"outputs": [],
|
| 167 |
-
"source": [
|
| 168 |
-
"def encode(text,server='local'):\n",
|
| 169 |
-
" headers = {'Content-Type': 'application/json'}\n",
|
| 170 |
-
" if server=='local': url='http://127.0.0.1:7860/encode'\n",
|
| 171 |
-
" elif server=='hf': url='https://huggingface.co/spaces/gmshroff/gmserver/encode'\n",
|
| 172 |
-
" body={'text':text}\n",
|
| 173 |
-
" response=requests.post(url=url,data=json.dumps(body),headers = {'Content-Type': 'application/json'})\n",
|
| 174 |
-
" return response\n",
|
| 175 |
-
" return json.loads(response.content)['embedding']"
|
| 176 |
-
]
|
| 177 |
-
},
|
| 178 |
-
{
|
| 179 |
-
"cell_type": "code",
|
| 180 |
-
"execution_count": null,
|
| 181 |
-
"metadata": {},
|
| 182 |
-
"outputs": [],
|
| 183 |
-
"source": [
|
| 184 |
-
"response=encode('I am a robot',server='local')"
|
| 185 |
-
]
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"cell_type": "code",
|
| 189 |
-
"execution_count": null,
|
| 190 |
-
"metadata": {},
|
| 191 |
-
"outputs": [],
|
| 192 |
-
"source": [
|
| 193 |
-
"response.content"
|
| 194 |
-
]
|
| 195 |
-
},
|
| 196 |
-
{
|
| 197 |
-
"cell_type": "code",
|
| 198 |
-
"execution_count": null,
|
| 199 |
-
"metadata": {},
|
| 200 |
-
"outputs": [],
|
| 201 |
-
"source": [
|
| 202 |
-
"headers = {'Content-Type': 'application/json'}\n",
|
| 203 |
-
"# url='http://127.0.0.1:5000/run'\n",
|
| 204 |
-
"url='https://huggingface.co/spaces/gmshroff/gmserver/'\n",
|
| 205 |
-
"# url='http://127.0.0.1:7860/run'\n",
|
| 206 |
-
"# body={\"script\":\"python update_valdata.py\"}\n",
|
| 207 |
-
"# body={\"script\":\"pwd\"}"
|
| 208 |
-
]
|
| 209 |
-
},
|
| 210 |
-
{
|
| 211 |
-
"cell_type": "code",
|
| 212 |
-
"execution_count": null,
|
| 213 |
-
"metadata": {},
|
| 214 |
-
"outputs": [],
|
| 215 |
-
"source": [
|
| 216 |
-
"response=requests.get(url=url)"
|
| 217 |
-
]
|
| 218 |
-
},
|
| 219 |
-
{
|
| 220 |
-
"cell_type": "code",
|
| 221 |
-
"execution_count": null,
|
| 222 |
-
"metadata": {},
|
| 223 |
-
"outputs": [],
|
| 224 |
-
"source": [
|
| 225 |
-
"response.content"
|
| 226 |
-
]
|
| 227 |
-
},
|
| 228 |
-
{
|
| 229 |
-
"cell_type": "code",
|
| 230 |
-
"execution_count": null,
|
| 231 |
-
"metadata": {},
|
| 232 |
-
"outputs": [],
|
| 233 |
-
"source": [
|
| 234 |
-
"# url='http://127.0.0.1:7860/encode'\n",
|
| 235 |
-
"body={'text':'I am very good'}\n"
|
| 236 |
-
]
|
| 237 |
-
},
|
| 238 |
-
{
|
| 239 |
-
"cell_type": "code",
|
| 240 |
-
"execution_count": null,
|
| 241 |
-
"metadata": {},
|
| 242 |
-
"outputs": [],
|
| 243 |
-
"source": [
|
| 244 |
-
"response=requests.post(url=url,data=json.dumps(body),headers = {'Content-Type': 'application/json'})\n"
|
| 245 |
-
]
|
| 246 |
-
},
|
| 247 |
-
{
|
| 248 |
-
"cell_type": "code",
|
| 249 |
-
"execution_count": null,
|
| 250 |
-
"metadata": {},
|
| 251 |
-
"outputs": [],
|
| 252 |
-
"source": [
|
| 253 |
-
"url"
|
| 254 |
-
]
|
| 255 |
-
},
|
| 256 |
-
{
|
| 257 |
-
"cell_type": "code",
|
| 258 |
-
"execution_count": null,
|
| 259 |
-
"metadata": {},
|
| 260 |
-
"outputs": [],
|
| 261 |
-
"source": [
|
| 262 |
-
"print(response)"
|
| 263 |
-
]
|
| 264 |
-
},
|
| 265 |
-
{
|
| 266 |
-
"cell_type": "code",
|
| 267 |
-
"execution_count": null,
|
| 268 |
-
"metadata": {},
|
| 269 |
-
"outputs": [],
|
| 270 |
-
"source": [
|
| 271 |
-
"print(response.__dict__)"
|
| 272 |
-
]
|
| 273 |
-
},
|
| 274 |
-
{
|
| 275 |
-
"cell_type": "code",
|
| 276 |
-
"execution_count": null,
|
| 277 |
-
"metadata": {},
|
| 278 |
-
"outputs": [],
|
| 279 |
-
"source": [
|
| 280 |
-
"print(json.loads(response.content)['embedding'])"
|
| 281 |
-
]
|
| 282 |
-
},
|
| 283 |
-
{
|
| 284 |
-
"cell_type": "code",
|
| 285 |
-
"execution_count": null,
|
| 286 |
-
"metadata": {
|
| 287 |
-
"tags": []
|
| 288 |
-
},
|
| 289 |
-
"outputs": [],
|
| 290 |
-
"source": [
|
| 291 |
-
"urlretrieve(url='http://127.0.0.1:7860/file/data.csv',filename='./returned_file.csv')"
|
| 292 |
-
]
|
| 293 |
-
},
|
| 294 |
-
{
|
| 295 |
-
"cell_type": "code",
|
| 296 |
-
"execution_count": null,
|
| 297 |
-
"metadata": {},
|
| 298 |
-
"outputs": [],
|
| 299 |
-
"source": [
|
| 300 |
-
"df=pd.read_parquet('/tmp/validation_subset_int8.parquet')"
|
| 301 |
-
]
|
| 302 |
-
},
|
| 303 |
-
{
|
| 304 |
-
"cell_type": "code",
|
| 305 |
-
"execution_count": null,
|
| 306 |
-
"metadata": {},
|
| 307 |
-
"outputs": [],
|
| 308 |
-
"source": [
|
| 309 |
-
"import torch\n",
|
| 310 |
-
"import torch.nn as nn\n",
|
| 311 |
-
"import torch.nn.functional as F\n",
|
| 312 |
-
"\n",
|
| 313 |
-
"class Transformer(nn.Module):\n",
|
| 314 |
-
" def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):\n",
|
| 315 |
-
" super(Transformer, self).__init__()\n",
|
| 316 |
-
" self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)\n",
|
| 317 |
-
"\n",
|
| 318 |
-
" def forward(self, src, tgt):\n",
|
| 319 |
-
" output = self.transformer(src, tgt)\n",
|
| 320 |
-
" return output\n",
|
| 321 |
-
"\n",
|
| 322 |
-
"# Example usage:\n",
|
| 323 |
-
"# Define the model parameters\n",
|
| 324 |
-
"d_model = 512\n",
|
| 325 |
-
"nhead = 8\n",
|
| 326 |
-
"num_encoder_layers = 6\n",
|
| 327 |
-
"num_decoder_layers = 6\n",
|
| 328 |
-
"dim_feedforward = 2048\n",
|
| 329 |
-
"dropout = 0.1\n",
|
| 330 |
-
"\n",
|
| 331 |
-
"# Initialize the model\n",
|
| 332 |
-
"model = Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)\n",
|
| 333 |
-
"\n",
|
| 334 |
-
"# Generate some sample data\n",
|
| 335 |
-
"src = torch.rand(10, 32, 512)\n",
|
| 336 |
-
"tgt = torch.rand(20, 32, 512)\n",
|
| 337 |
-
"\n",
|
| 338 |
-
"# Pass the data through the model\n",
|
| 339 |
-
"output = model(src, tgt)\n",
|
| 340 |
-
"\n",
|
| 341 |
-
"# Print the output shape\n",
|
| 342 |
-
"print(output.shape)"
|
| 343 |
-
]
|
| 344 |
-
}
|
| 345 |
-
],
|
| 346 |
-
"metadata": {
|
| 347 |
-
"kernelspec": {
|
| 348 |
-
"display_name": "Python 3 (ipykernel)",
|
| 349 |
-
"language": "python",
|
| 350 |
-
"name": "python3"
|
| 351 |
-
},
|
| 352 |
-
"language_info": {
|
| 353 |
-
"codemirror_mode": {
|
| 354 |
-
"name": "ipython",
|
| 355 |
-
"version": 3
|
| 356 |
-
},
|
| 357 |
-
"file_extension": ".py",
|
| 358 |
-
"mimetype": "text/x-python",
|
| 359 |
-
"name": "python",
|
| 360 |
-
"nbconvert_exporter": "python",
|
| 361 |
-
"pygments_lexer": "ipython3",
|
| 362 |
-
"version": "3.10.13"
|
| 363 |
-
}
|
| 364 |
-
},
|
| 365 |
-
"nbformat": 4,
|
| 366 |
-
"nbformat_minor": 4
|
| 367 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|