Spaces:
Running
Running
| import os, re, math, uuid, time, shutil, logging, tempfile, threading, requests, asyncio, numpy as np | |
| from datetime import datetime, timedelta | |
| from collections import Counter | |
| import gradio as gr | |
| import torch | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| from keybert import KeyBERT | |
| import edge_tts | |
| from moviepy.editor import ( | |
| VideoFileClip, AudioFileClip, concatenate_videoclips, concatenate_audioclips, | |
| CompositeAudioClip, AudioClip, TextClip, CompositeVideoClip, VideoClip | |
| ) | |
| # ------------------- Configuración & Globals ------------------- | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s") | |
| logger = logging.getLogger(__name__) | |
| PEXELS_API_KEY = os.getenv("PEXELS_API_KEY") | |
| if not PEXELS_API_KEY: | |
| raise RuntimeError("Debes definir PEXELS_API_KEY en 'Settings' -> 'Variables & secrets'") | |
| # --- Modelos inicializados como None para Carga Perezosa (Lazy Loading) --- | |
| tokenizer = None | |
| gpt2_model = None | |
| kw_model = None | |
| # --- | |
| RESULTS_DIR = "video_results" | |
| os.makedirs(RESULTS_DIR, exist_ok=True) | |
| TASKS = {} | |
| # --- Lista de Voces Fija para un Arranque Instantáneo --- | |
| SPANISH_VOICES = [ | |
| "es-ES-ElviraNeural", "es-ES-AlvaroNeural", "es-MX-DaliaNeural", "es-MX-JorgeNeural", | |
| "es-AR-ElenaNeural", "es-AR-TomasNeural", "es-CO-SalomeNeural", "es-CO-GonzaloNeural", | |
| "es-US-PalomaNeural", "es-US-AlonsoNeural" | |
| ] | |
| # ------------------- Funciones para cargar modelos bajo demanda ------------------- | |
| def get_tokenizer(): | |
| global tokenizer | |
| if tokenizer is None: | |
| logger.info("Cargando tokenizer por primera vez...") | |
| tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish") | |
| if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token | |
| return tokenizer | |
| def get_gpt2_model(): | |
| global gpt2_model | |
| if gpt2_model is None: | |
| logger.info("Cargando modelo GPT-2 por primera vez...") | |
| gpt2_model = GPT2LMHeadModel.from_pretrained("datificate/gpt2-small-spanish").eval() | |
| return gpt2_model | |
| def get_kw_model(): | |
| global kw_model | |
| if kw_model is None: | |
| logger.info("Cargando modelo KeyBERT por primera vez...") | |
| kw_model = KeyBERT("distilbert-base-multilingual-cased") | |
| return kw_model | |
| # ------------------- Funciones del Pipeline de Vídeo ------------------- | |
| def gpt2_script(prompt: str, max_len: int = 160) -> str: | |
| local_tokenizer = get_tokenizer() | |
| local_gpt2_model = get_gpt2_model() | |
| instruction = f"Escribe un guion corto y coherente sobre: {prompt}" | |
| inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512) | |
| outputs = local_gpt2_model.generate( | |
| **inputs, max_length=max_len + inputs["input_ids"].shape[1], do_sample=True, | |
| top_p=0.9, top_k=40, temperature=0.7, no_repeat_ngram_size=3, | |
| pad_token_id=local_tokenizer.pad_token_id, eos_token_id=local_tokenizer.eos_token_id, | |
| ) | |
| text = local_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return text.split("sobre:")[-1].strip()[:max_len] | |
| async def edge_tts_synth(text: str, voice: str, path: str): | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(path) | |
| def keywords(text: str) -> list[str]: | |
| local_kw_model = get_kw_model() | |
| clean_text = re.sub(r"[^\w\sáéíóúñÁÉÍÓÚÑ]", "", text.lower()) | |
| try: | |
| kws = local_kw_model.extract_keywords(clean_text, stop_words="spanish", top_n=5) | |
| return [k.replace(" ", "+") for k, _ in kws if k] | |
| except Exception as e: | |
| logger.warning(f"KeyBERT falló, usando método simple. Error: {e}") | |
| words = [w for w in clean_text.split() if len(w) > 4] | |
| return [w for w, _ in Counter(words).most_common(5)] or ["naturaleza"] | |
| def pexels_search(query: str, count: int) -> list[dict]: | |
| res = requests.get( | |
| "https://api.pexels.com/videos/search", | |
| headers={"Authorization": PEXELS_API_KEY}, | |
| params={"query": query, "per_page": count, "orientation": "landscape"}, | |
| timeout=20, | |
| ) | |
| res.raise_for_status() | |
| return res.json().get("videos", []) | |
| def download_file(url: str, folder: str) -> str | None: | |
| try: | |
| name = uuid.uuid4().hex + ".mp4" | |
| path = os.path.join(folder, name) | |
| with requests.get(url, stream=True, timeout=60) as r: | |
| r.raise_for_status() | |
| with open(path, "wb") as f: | |
| for chunk in r.iter_content(1024 * 1024): f.write(chunk) | |
| return path if os.path.exists(path) and os.path.getsize(path) > 1000 else None | |
| except Exception as e: | |
| logger.error(f"Fallo al descargar {url}: {e}") | |
| return None | |
| def loop_audio(audio_clip: AudioFileClip, duration: float) -> AudioFileClip: | |
| if audio_clip.duration >= duration: return audio_clip.subclip(0, duration) | |
| loops = math.ceil(duration / audio_clip.duration) | |
| return concatenate_audioclips([audio_clip] * loops).subclip(0, duration) | |
| def make_subtitle_clips(script: str, video_w: int, video_h: int, duration: float): | |
| sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()] | |
| if not sentences: return [] | |
| total_words = sum(len(s.split()) for s in sentences) or 1 | |
| time_per_word = duration / total_words | |
| clips, current_time = [], 0.0 | |
| for sentence in sentences: | |
| num_words = len(sentence.split()) | |
| sentence_duration = num_words * time_per_word | |
| if sentence_duration < 0.1: continue | |
| txt_clip = ( | |
| TextClip(sentence, fontsize=int(video_h * 0.05), color="white", | |
| stroke_color="black", stroke_width=1.5, method="caption", | |
| size=(int(video_w * 0.9), None), font="Arial-Bold") | |
| .set_start(current_time) | |
| .set_duration(sentence_duration) | |
| .set_position(("center", "bottom")) | |
| ) | |
| clips.append(txt_clip) | |
| current_time += sentence_duration | |
| return clips | |
| def make_grain_clip(size: tuple[int, int], duration: float): | |
| w, h = size | |
| def make_frame(t): | |
| noise = np.random.randint(0, 40, (h, w, 1), dtype=np.uint8) | |
| return np.repeat(noise, 3, axis=2) | |
| return VideoClip(make_frame, duration=duration).set_opacity(0.15) | |
| def build_video(script_text: str, generate_script_flag: bool, voice: str, music_path: str | None) -> str: | |
| tmp_dir = tempfile.mkdtemp() | |
| try: | |
| script = gpt2_script(script_text) if generate_script_flag else script_text.strip() | |
| voice_path = os.path.join(tmp_dir, "voice.mp3") | |
| asyncio.run(edge_tts_synth(script, voice, voice_path)) | |
| voice_clip = AudioFileClip(voice_path) | |
| video_duration = voice_clip.duration | |
| if video_duration < 1: raise ValueError("El audio generado es demasiado corto.") | |
| video_paths = [] | |
| for kw in keywords(script): | |
| if len(video_paths) >= 8: break | |
| for video_data in pexels_search(kw, 2): | |
| best_file = max(video_data.get("video_files", []), key=lambda f: f.get("width", 0)) | |
| if best_file: | |
| path = download_file(best_file.get('link'), tmp_dir) | |
| if path: video_paths.append(path) | |
| if len(video_paths) >= 8: break | |
| if not video_paths: raise RuntimeError("No se encontraron vídeos en Pexels.") | |
| segments = [] | |
| for path in video_paths: | |
| try: segments.append(VideoFileClip(path)) | |
| except Exception as e: logger.warning(f"No se pudo cargar el clip {path}: {e}") | |
| if not segments: raise RuntimeError("Los clips descargados no son válidos.") | |
| final_segments = [s.subclip(0, min(8, s.duration)) for s in segments] | |
| base_video = concatenate_videoclips(final_segments, method="chain") | |
| if base_video.duration < video_duration: | |
| num_loops = math.ceil(video_duration / base_video.duration) | |
| base_video = concatenate_videoclips([base_video] * num_loops, method="chain") | |
| base_video = base_video.subclip(0, video_duration) | |
| if music_path: | |
| music_clip = loop_audio(AudioFileClip(music_path), video_duration).volumex(0.20) | |
| final_audio = CompositeAudioClip([music_clip, voice_clip]) | |
| else: final_audio = voice_clip | |
| subtitles = make_subtitle_clips(script, base_video.w, base_video.h, video_duration) | |
| grain_effect = make_grain_clip(base_video.size, video_duration) | |
| final_video = CompositeVideoClip([base_video, grain_effect, *subtitles]).set_audio(final_audio) | |
| output_path = os.path.join(tmp_dir, "final_video.mp4") | |
| final_video.write_videofile(output_path, fps=24, codec="libx264", audio_codec="aac", threads=2, logger=None) | |
| return output_path | |
| finally: | |
| # Intenta cerrar todos los clips de MoviePy para liberar memoria | |
| if 'voice_clip' in locals(): voice_clip.close() | |
| if 'music_clip' in locals(): music_clip.close() | |
| if 'base_video' in locals(): base_video.close() | |
| if 'final_video' in locals(): final_video.close() | |
| if 'segments' in locals(): | |
| for seg in segments: seg.close() | |
| def worker(task_id: str, mode: str, topic: str, user_script: str, voice: str, music: str | None): | |
| try: | |
| text = topic if mode == "Generar Guion con IA" else user_script | |
| result_tmp_path = build_video(text, mode == "Generar Guion con IA", voice, music) | |
| final_path = os.path.join(RESULTS_DIR, f"{task_id}.mp4") | |
| shutil.copy2(result_tmp_path, final_path) | |
| TASKS[task_id] = {"status": "done", "result": final_path, "timestamp": datetime.utcnow()} | |
| shutil.rmtree(os.path.dirname(result_tmp_path)) | |
| except Exception as e: | |
| logger.error(f"Error en la tarea {task_id}: {e}", exc_info=True) | |
| TASKS[task_id] = {"status": "error", "error": str(e), "timestamp": datetime.utcnow()} | |
| def submit_task(mode, topic, user_script, voice, music): | |
| content = topic if mode == "Generar Guion con IA" else user_script | |
| if not content.strip(): return "", "Por favor, ingresa un tema o guion." | |
| task_id = uuid.uuid4().hex[:8] | |
| TASKS[task_id] = {"status": "processing", "timestamp": datetime.utcnow()} | |
| threading.Thread(target=worker, args=(task_id, mode, topic, user_script, voice, music), daemon=True).start() | |
| return task_id, f"✅ Tarea creada con ID: {task_id}. Comprueba el estado en unos minutos." | |
| def check_task_status(task_id): | |
| if not task_id or task_id not in TASKS: return None, None, "ID de tarea no válido o no encontrado." | |
| task_info = TASKS[task_id] | |
| status = task_info["status"] | |
| if status == "processing": return None, None, "⏳ La tarea se está procesando..." | |
| if status == "error": return None, None, f"❌ Error: {task_info['error']}" | |
| if status == "done": return task_info["result"], task_info["result"], "✅ ¡Vídeo listo!" | |
| return None, None, "Estado desconocido." | |
| def janitor_thread(): | |
| while True: | |
| time.sleep(3600) | |
| now = datetime.utcnow() | |
| for task_id, info in list(TASKS.items()): | |
| if now - info["timestamp"] > timedelta(hours=24): | |
| if info.get("result") and os.path.exists(info["result"]): | |
| try: | |
| os.remove(info["result"]) | |
| logger.info(f"Limpiado vídeo antiguo: {info['result']}") | |
| except Exception as e: | |
| logger.error(f"Error al limpiar {info['result']}: {e}") | |
| del TASKS[task_id] | |
| threading.Thread(target=janitor_thread, daemon=True).start() | |
| with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# 🎬 Generador de Vídeos con IA") | |
| gr.Markdown("Crea vídeos a partir de texto, con voz, música y efectos visuales.") | |
| with gr.Tabs(): | |
| with gr.TabItem("1. Crear Vídeo"): | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| mode_radio = gr.Radio(["Generar Guion con IA", "Usar Mi Guion"], value="Generar Guion con IA", label="Elige el método") | |
| topic_textbox = gr.Textbox(label="Tema para la IA", placeholder="Ej: La historia de la Vía Láctea") | |
| script_textbox = gr.Textbox(label="Tu Guion Completo", lines=5, visible=False, placeholder="Pega aquí tu guion...") | |
| voice_dropdown = gr.Dropdown(SPANISH_VOICES, value=SPANISH_VOICES[0], label="Elige una voz") | |
| music_upload = gr.Audio(type="filepath", label="Música de fondo (opcional)") | |
| submit_button = gr.Button("✨ Generar Vídeo", variant="primary") | |
| with gr.Column(scale=1): | |
| task_id_output = gr.Textbox(label="ID de tu Tarea (Guárdalo)", interactive=False) | |
| status_output = gr.Textbox(label="Estado", interactive=False) | |
| gr.Markdown("---") | |
| gr.Markdown("### ¿Cómo funciona?\n1. Elige un método y rellena el texto.\n2. **Copia el ID** que aparecerá.\n3. Ve a la pestaña **'2. Revisar Estado'**.") | |
| with gr.TabItem("2. Revisar Estado"): | |
| gr.Markdown("### Consulta el estado de tu vídeo") | |
| with gr.Row(): | |
| task_id_input = gr.Textbox(label="Pega aquí el ID de tu tarea", scale=3) | |
| check_button = gr.Button("🔍 Verificar", scale=1) | |
| status_check_output = gr.Textbox(label="Estado Actual", interactive=False) | |
| video_output = gr.Video(label="Resultado del Vídeo") | |
| download_file_output = gr.File(label="Descargar Fichero") | |
| def toggle_textboxes(mode): | |
| is_ai_mode = mode == "Generar Guion con IA" | |
| return gr.update(visible=is_ai_mode), gr.update(visible=not is_ai_mode) | |
| mode_radio.change(toggle_textboxes, inputs=mode_radio, outputs=[topic_textbox, script_textbox]) | |
| submit_button.click(submit_task, inputs=[mode_radio, topic_textbox, script_textbox, voice_dropdown, music_upload], outputs=[task_id_output, status_output]) | |
| check_button.click(check_task_status, inputs=task_id_input, outputs=[video_output, download_file_output, status_check_output]) | |
| if __name__ == "__main__": | |
| demo.launch() |