Spaces:
Sleeping
Sleeping
| import os | |
| import asyncio | |
| import logging | |
| import tempfile | |
| import requests | |
| from datetime import datetime | |
| import edge_tts | |
| from gtts import gTTS | |
| import gradio as gr | |
| import torch | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| from keybert import KeyBERT | |
| from moviepy.editor import VideoFileClip, concatenate_videoclips, AudioFileClip, CompositeAudioClip, concatenate_audioclips, AudioClip | |
| import re | |
| import math | |
| import shutil | |
| import json | |
| from collections import Counter | |
| import time | |
| # Configuración de logging | |
| logging.basicConfig( | |
| level=logging.DEBUG, | |
| format='%(asctime)s - %(levelname)s - %(message)s', | |
| handlers=[ | |
| logging.StreamHandler(), | |
| logging.FileHandler('video_generator_full.log', encoding='utf-8') | |
| ] | |
| ) | |
| logger = logging.getLogger(__name__) | |
| logger.info("="*80) | |
| logger.info("INICIO DE EJECUCIÓN - GENERADOR DE VIDEOS") | |
| logger.info("="*80) | |
| # Diccionario de voces TTS disponibles organizadas por idioma | |
| VOCES_DISPONIBLES = { | |
| "Español (España)": { | |
| "es-ES-JuanNeural": "Juan (España) - Masculino", | |
| "es-ES-ElviraNeural": "Elvira (España) - Femenino", | |
| "es-ES-AlvaroNeural": "Álvaro (España) - Masculino", | |
| "es-ES-AbrilNeural": "Abril (España) - Femenino", | |
| "es-ES-ArnauNeural": "Arnau (España) - Masculino", | |
| "es-ES-DarioNeural": "Darío (España) - Masculino", | |
| "es-ES-EliasNeural": "Elías (España) - Masculino", | |
| "es-ES-EstrellaNeural": "Estrella (España) - Femenino", | |
| "es-ES-IreneNeural": "Irene (España) - Femenino", | |
| "es-ES-LaiaNeural": "Laia (España) - Femenino", | |
| "es-ES-LiaNeural": "Lía (España) - Femenino", | |
| "es-ES-NilNeural": "Nil (España) - Masculino", | |
| "es-ES-SaulNeural": "Saúl (España) - Masculino", | |
| "es-ES-TeoNeural": "Teo (España) - Masculino", | |
| "es-ES-TrianaNeural": "Triana (España) - Femenino", | |
| "es-ES-VeraNeural": "Vera (España) - Femenino" | |
| }, | |
| "Español (México)": { | |
| "es-MX-JorgeNeural": "Jorge (México) - Masculino", | |
| "es-MX-DaliaNeural": "Dalia (México) - Femenino", | |
| "es-MX-BeatrizNeural": "Beatriz (México) - Femenino", | |
| "es-MX-CandelaNeural": "Candela (México) - Femenino", | |
| "es-MX-CarlotaNeural": "Carlota (México) - Femenino", | |
| "es-MX-CecilioNeural": "Cecilio (México) - Masculino", | |
| "es-MX-GerardoNeural": "Gerardo (México) - Masculino", | |
| "es-MX-LarissaNeural": "Larissa (México) - Femenino", | |
| "es-MX-LibertoNeural": "Liberto (México) - Masculino", | |
| "es-MX-LucianoNeural": "Luciano (México) - Masculino", | |
| "es-MX-MarinaNeural": "Marina (México) - Femenino", | |
| "es-MX-NuriaNeural": "Nuria (México) - Femenino", | |
| "es-MX-PelayoNeural": "Pelayo (México) - Masculino", | |
| "es-MX-RenataNeural": "Renata (México) - Femenino", | |
| "es-MX-YagoNeural": "Yago (México) - Masculino" | |
| }, | |
| "Español (Argentina)": { | |
| "es-AR-TomasNeural": "Tomás (Argentina) - Masculino", | |
| "es-AR-ElenaNeural": "Elena (Argentina) - Femenino" | |
| }, | |
| "Español (Colombia)": { | |
| "es-CO-GonzaloNeural": "Gonzalo (Colombia) - Masculino", | |
| "es-CO-SalomeNeural": "Salomé (Colombia) - Femenino" | |
| }, | |
| "Español (Chile)": { | |
| "es-CL-LorenzoNeural": "Lorenzo (Chile) - Masculino", | |
| "es-CL-CatalinaNeural": "Catalina (Chile) - Femenino" | |
| }, | |
| "Español (Perú)": { | |
| "es-PE-AlexNeural": "Alex (Perú) - Masculino", | |
| "es-PE-CamilaNeural": "Camila (Perú) - Femenino" | |
| }, | |
| "Español (Venezuela)": { | |
| "es-VE-PaolaNeural": "Paola (Venezuela) - Femenino", | |
| "es-VE-SebastianNeural": "Sebastián (Venezuela) - Masculino" | |
| }, | |
| "Español (Estados Unidos)": { | |
| "es-US-AlonsoNeural": "Alonso (Estados Unidos) - Masculino", | |
| "es-US-PalomaNeural": "Paloma (Estados Unidos) - Femenino" | |
| } | |
| } | |
| # Función para obtener lista plana de voces para el dropdown | |
| def get_voice_choices(): | |
| choices = [] | |
| for region, voices in VOCES_DISPONIBLES.items(): | |
| for voice_id, voice_name in voices.items(): | |
| choices.append((f"{voice_name} ({region})", voice_id)) | |
| return choices | |
| # Obtener las voces al inicio del script | |
| AVAILABLE_VOICES = get_voice_choices() | |
| DEFAULT_VOICE_ID = "es-MX-DaliaNeural" # Cambiado a una voz más estable | |
| DEFAULT_VOICE_NAME = DEFAULT_VOICE_ID | |
| for text, voice_id in AVAILABLE_VOICES: | |
| if voice_id == DEFAULT_VOICE_ID: | |
| DEFAULT_VOICE_NAME = text | |
| break | |
| if DEFAULT_VOICE_ID not in [v[1] for v in AVAILABLE_VOICES]: | |
| DEFAULT_VOICE_ID = AVAILABLE_VOICES[0][1] if AVAILABLE_VOICES else "es-MX-DaliaNeural" | |
| DEFAULT_VOICE_NAME = AVAILABLE_VOICES[0][0] if AVAILABLE_VOICES else "Dalia (México) - Femenino" | |
| logger.info(f"Voz por defecto seleccionada (ID): {DEFAULT_VOICE_ID}") | |
| # Clave API de Pexels | |
| PEXELS_API_KEY = os.environ.get("PEXELS_API_KEY") | |
| if not PEXELS_API_KEY: | |
| logger.critical("NO SE ENCONTRÓ PEXELS_API_KEY EN VARIABLES DE ENTORNO") | |
| # Inicialización de modelos | |
| MODEL_NAME = "datificate/gpt2-small-spanish" | |
| logger.info(f"Inicializando modelo GPT-2: {MODEL_NAME}") | |
| tokenizer = None | |
| model = None | |
| try: | |
| tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME) | |
| model = GPT2LMHeadModel.from_pretrained(MODEL_NAME).eval() | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| logger.info(f"Modelo GPT-2 cargado | Vocabulario: {len(tokenizer)} tokens") | |
| except Exception as e: | |
| logger.error(f"FALLA CRÍTICA al cargar GPT-2: {str(e)}", exc_info=True) | |
| tokenizer = model = None | |
| logger.info("Cargando modelo KeyBERT...") | |
| kw_model = None | |
| try: | |
| kw_model = KeyBERT('distilbert-base-multilingual-cased') | |
| logger.info("KeyBERT inicializado correctamente") | |
| except Exception as e: | |
| logger.error(f"FALLA al cargar KeyBERT: {str(e)}", exc_info=True) | |
| kw_model = None | |
| def buscar_videos_pexels(query, api_key, per_page=5): | |
| if not api_key: | |
| logger.warning("No se puede buscar en Pexels: API Key no configurada.") | |
| return [] | |
| logger.debug(f"Buscando en Pexels: '{query}' | Resultados: {per_page}") | |
| headers = {"Authorization": api_key} | |
| try: | |
| params = { | |
| "query": query, | |
| "per_page": per_page, | |
| "orientation": "landscape", | |
| "size": "medium" | |
| } | |
| response = requests.get( | |
| "https://api.pexels.com/videos/search", | |
| headers=headers, | |
| params=params, | |
| timeout=20 | |
| ) | |
| response.raise_for_status() | |
| data = response.json() | |
| videos = data.get('videos', []) | |
| logger.info(f"Pexels: {len(videos)} videos encontrados para '{query}'") | |
| return videos | |
| except requests.exceptions.RequestException as e: | |
| logger.error(f"Error de conexión Pexels para '{query}': {str(e)}") | |
| return [] | |
| except json.JSONDecodeError: | |
| logger.error(f"Pexels: JSON inválido recibido | Status: {response.status_code}") | |
| return [] | |
| except Exception as e: | |
| logger.error(f"Error inesperado Pexels para '{query}': {str(e)}") | |
| return [] | |
| def generate_script(prompt, max_length=150): | |
| logger.info(f"Generando guión | Prompt: '{prompt[:50]}...' | Longitud máxima: {max_length}") | |
| if not tokenizer or not model: | |
| logger.warning("Modelos GPT-2 no disponibles - Usando prompt original como guion.") | |
| return prompt.strip() | |
| instruction_phrase_start = "Escribe un guion corto, interesante y coherente sobre:" | |
| ai_prompt = f"{instruction_phrase_start} {prompt}" | |
| try: | |
| inputs = tokenizer(ai_prompt, return_tensors="pt", truncation=True, max_length=512) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| outputs = model.generate( | |
| **inputs, | |
| max_length=max_length + inputs[list(inputs.keys())[0]].size(1), | |
| do_sample=True, | |
| top_p=0.9, | |
| top_k=40, | |
| temperature=0.7, | |
| repetition_penalty=1.2, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| no_repeat_ngram_size=3 | |
| ) | |
| text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| prompt_in_output_idx = text.lower().find(prompt.lower()) | |
| if prompt_in_output_idx != -1: | |
| cleaned_text = text[prompt_in_output_idx + len(prompt):].strip() | |
| logger.debug("Texto limpiado tomando parte después del prompt original.") | |
| else: | |
| instruction_start_idx = text.find(instruction_phrase_start) | |
| if instruction_start_idx != -1: | |
| cleaned_text = text[instruction_start_idx + len(instruction_phrase_start):].strip() | |
| logger.debug("Texto limpiado tomando parte después de la frase de instrucción base.") | |
| else: | |
| logger.warning("No se pudo identificar el inicio del guión generado.") | |
| cleaned_text = text.strip() | |
| cleaned_text = re.sub(r'<[^>]+>', '', cleaned_text).strip() | |
| cleaned_text = cleaned_text.lstrip(':').lstrip('.').strip() | |
| sentences = cleaned_text.split('.') | |
| if sentences and sentences[0].strip(): | |
| final_text = sentences[0].strip() + '.' | |
| if len(sentences) > 1 and sentences[1].strip() and len(final_text.split()) < max_length * 0.7: | |
| final_text += " " + sentences[1].strip() + "." | |
| final_text = final_text.replace("..", ".") | |
| logger.info(f"Guion generado final (Truncado a 100 chars): '{final_text[:100]}...'") | |
| return final_text.strip() | |
| logger.info(f"Guion generado final (sin oraciones completas detectadas): '{cleaned_text[:100]}...'") | |
| return cleaned_text.strip() | |
| except Exception as e: | |
| logger.error(f"Error generando guion con GPT-2: {str(e)}") | |
| return prompt.strip() | |
| async def text_to_speech(text, output_path, voice): | |
| logger.info(f"Convirtiendo texto a voz | Caracteres: {len(text)} | Voz: {voice}") | |
| if not text or not text.strip(): | |
| logger.warning("Texto vacío para TTS") | |
| return False | |
| try: | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_path) | |
| if os.path.exists(output_path) and os.path.getsize(output_path) > 100: | |
| logger.info(f"Audio guardado exitosamente con edge_tts en: {output_path}") | |
| return True | |
| logger.warning(f"edge_tts falló, intentando gTTS...") | |
| except Exception as e: | |
| logger.error(f"Error en edge_tts con voz '{voice}': {str(e)}") | |
| try: | |
| tts = gTTS(text=text, lang='es') | |
| tts.save(output_path) | |
| if os.path.exists(output_path) and os.path.getsize(output_path) > 100: | |
| logger.info(f"Audio guardado exitosamente con gTTS en: {output_path}") | |
| return True | |
| logger.error(f"gTTS falló o archivo vacío en: {output_path}") | |
| return False | |
| except Exception as e: | |
| logger.error(f"Error en gTTS: {str(e)}") | |
| return False | |
| def download_video_file(url, temp_dir): | |
| if not url: | |
| logger.warning("URL de video no proporcionada") | |
| return None | |
| try: | |
| logger.info(f"Descargando video desde: {url[:80]}...") | |
| os.makedirs(temp_dir, exist_ok=True) | |
| file_name = f"video_dl_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}.mp4" | |
| output_path = os.path.join(temp_dir, file_name) | |
| with requests.get(url, stream=True, timeout=60) as r: | |
| r.raise_for_status() | |
| with open(output_path, 'wb') as f: | |
| for chunk in r.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| if os.path.exists(output_path) and os.path.getsize(output_path) > 1000: | |
| logger.info(f"Video descargado exitosamente: {output_path}") | |
| return output_path | |
| logger.warning(f"Descarga parece incompleta o vacía: {output_path}") | |
| if os.path.exists(output_path): | |
| os.remove(output_path) | |
| return None | |
| except requests.exceptions.RequestException as e: | |
| logger.error(f"Error de descarga para {url[:80]}...: {str(e)}") | |
| return None | |
| except Exception as e: | |
| logger.error(f"Error inesperado descargando {url[:80]}...: {str(e)}") | |
| return None | |
| def loop_audio_to_length(audio_clip, target_duration): | |
| logger.debug(f"Ajustando audio | Duración actual: {audio_clip.duration:.2f}s | Objetivo: {target_duration:.2f}s") | |
| if audio_clip is None or audio_clip.duration is None or audio_clip.duration <= 0: | |
| logger.warning("Input audio clip is invalid") | |
| sr = getattr(audio_clip, 'fps', 44100) if audio_clip else 44100 | |
| return AudioClip(lambda t: 0, duration=target_duration, fps=sr) | |
| if audio_clip.duration >= target_duration: | |
| logger.debug("Audio clip ya es suficientemente largo. Recortando.") | |
| return audio_clip.subclip(0, target_duration) | |
| loops = math.ceil(target_duration / audio_clip.duration) | |
| logger.debug(f"Creando {loops} loops de audio") | |
| try: | |
| looped_audio = concatenate_audioclips([audio_clip] * loops) | |
| final_looped_audio = looped_audio.subclip(0, target_duration) | |
| looped_audio.close() | |
| return final_looped_audio | |
| except Exception as e: | |
| logger.error(f"Error concatenando audio: {str(e)}") | |
| return audio_clip.subclip(0, min(audio_clip.duration, target_duration)) | |
| def extract_visual_keywords_from_script(script_text): | |
| logger.info("Extrayendo palabras clave del guion") | |
| if not script_text or not script_text.strip(): | |
| logger.warning("Guion vacío") | |
| return ["naturaleza", "ciudad", "paisaje"] | |
| clean_text = re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', '', script_text) | |
| if kw_model: | |
| try: | |
| keywords1 = kw_model.extract_keywords(clean_text, keyphrase_ngram_range=(1, 1), stop_words='spanish', top_n=5) | |
| keywords2 = kw_model.extract_keywords(clean_text, keyphrase_ngram_range=(2, 2), stop_words='spanish', top_n=3) | |
| all_keywords = keywords1 + keywords2 | |
| all_keywords.sort(key=lambda item: item[1], reverse=True) | |
| keywords_list = [] | |
| seen_keywords = set() | |
| for keyword, _ in all_keywords: | |
| formatted_keyword = keyword.lower().replace(" ", "+") | |
| if formatted_keyword and formatted_keyword not in seen_keywords: | |
| keywords_list.append(formatted_keyword) | |
| seen_keywords.add(formatted_keyword) | |
| if len(keywords_list) >= 5: | |
| break | |
| if keywords_list: | |
| logger.debug(f"Palabras clave extraídas por KeyBERT: {keywords_list}") | |
| return keywords_list | |
| except Exception as e: | |
| logger.warning(f"KeyBERT falló: {str(e)}. Usando método simple.") | |
| logger.debug("Extrayendo palabras clave con método simple...") | |
| words = clean_text.lower().split() | |
| stop_words = {"el", "la", "los", "las", "de", "en", "y", "a", "que", "es", "un", "una", "con", "para", "del", "al", "por", "su", "sus", "se", "lo", "le", "me", "te", "nos", "os", "les", "mi", "tu"} | |
| valid_words = [word for word in words if len(word) > 3 and word not in stop_words] | |
| if not valid_words: | |
| logger.warning("No se encontraron palabras clave válidas.") | |
| return ["espiritual", "terror", "matrix", "arcontes", "galaxia"] | |
| word_counts = Counter(valid_words) | |
| top_keywords = [word.replace(" ", "+") for word, _ in word_counts.most_common(5)] | |
| logger.info(f"Palabras clave finales: {top_keywords}") | |
| return top_keywords | |
| async def crear_video_async(prompt_type, input_text, selected_voice, musica_file=None): | |
| logger.info("="*80) | |
| logger.info(f"INICIANDO CREACIÓN DE VIDEO | Tipo: {prompt_type}") | |
| logger.debug(f"Input: '{input_text[:100]}...'") | |
| logger.info(f"Voz seleccionada: {selected_voice}") | |
| start_time = datetime.now() | |
| temp_dir_intermediate = tempfile.mkdtemp(prefix="video_gen_intermediate_") | |
| logger.info(f"Directorio temporal creado: {temp_dir_intermediate}") | |
| temp_intermediate_files = [] | |
| audio_tts_original = None | |
| musica_audio_original = None | |
| audio_tts = None | |
| musica_audio = None | |
| video_base = None | |
| video_final = None | |
| source_clips = [] | |
| clips_to_concatenate = [] | |
| try: | |
| # 1. Generar o usar guion | |
| guion = generate_script(input_text) if prompt_type == "Generar Guion con IA" else input_text.strip() | |
| logger.info(f"Guion final ({len(guion)} chars): '{guion[:100]}...'") | |
| if not guion.strip(): | |
| raise ValueError("El guion está vacío.") | |
| # 2. Generar audio de voz | |
| voz_path = os.path.join(temp_dir_intermediate, "voz.mp3") | |
| tts_voices_to_try = [selected_voice, "es-MX-DaliaNeural"] | |
| tts_success = False | |
| max_chunk_length = 1000 | |
| text_chunks = [guion[i:i + max_chunk_length] for i in range(0, len(guion), max_chunk_length)] | |
| logger.info(f"Texto dividido en {len(text_chunks)} fragmentos para TTS") | |
| for current_voice in tts_voices_to_try: | |
| logger.info(f"Intentando TTS con voz: {current_voice}") | |
| try: | |
| temp_audio_files = [] | |
| for i, chunk in enumerate(text_chunks): | |
| temp_path = os.path.join(temp_dir_intermediate, f"voz_chunk_{i}.mp3") | |
| tts_success = await text_to_speech(chunk, temp_path, current_voice) | |
| if tts_success and os.path.exists(temp_path) and os.path.getsize(temp_path) > 100: | |
| temp_audio_files.append(temp_path) | |
| else: | |
| logger.warning(f"TTS falló para fragmento {i} con voz: {current_voice}") | |
| break | |
| if len(temp_audio_files) == len(text_chunks): | |
| audio_clips = [AudioFileClip(f) for f in temp_audio_files] | |
| concatenated_audio = concatenate_audioclips(audio_clips) | |
| concatenated_audio.write_audiofile(voz_path, codec='mp3') | |
| concatenated_audio.close() | |
| for clip in audio_clips: | |
| clip.close() | |
| tts_success = os.path.exists(voz_path) and os.path.getsize(voz_path) > 100 | |
| temp_intermediate_files.extend(temp_audio_files) | |
| if tts_success: | |
| logger.info(f"TTS exitoso con voz: {current_voice}") | |
| break | |
| except Exception as e: | |
| logger.error(f"Error en TTS con voz '{current_voice}': {str(e)}") | |
| if not tts_success or not os.path.exists(voz_path) or os.path.getsize(voz_path) <= 100: | |
| raise ValueError(f"Error generando voz. Intentos con {tts_voices_to_try} y gTTS fallaron.") | |
| temp_intermediate_files.append(voz_path) | |
| audio_tts_original = AudioFileClip(voz_path) | |
| if audio_tts_original.duration is None or audio_tts_original.duration <= 0: | |
| raise ValueError("Audio de voz generado es inválido.") | |
| audio_tts = audio_tts_original | |
| audio_duration = audio_tts_original.duration | |
| logger.info(f"Duración audio voz: {audio_duration:.2f} segundos") | |
| if audio_duration < 1.0: | |
| raise ValueError("Audio de voz demasiado corto.") | |
| # 3. Extraer palabras clave | |
| keywords = extract_visual_keywords_from_script(guion) | |
| if not keywords: | |
| keywords = ["video", "background"] | |
| logger.info(f"Palabras clave: {keywords}") | |
| # 4. Buscar y descargar videos | |
| videos_data = [] | |
| total_desired_videos = 10 | |
| per_page_per_keyword = max(1, total_desired_videos // len(keywords)) | |
| for keyword in keywords: | |
| if len(videos_data) >= total_desired_videos: | |
| break | |
| videos = buscar_videos_pexels(keyword, PEXELS_API_KEY, per_page=per_page_per_keyword) | |
| videos_data.extend(videos) | |
| if len(videos_data) < total_desired_videos / 2: | |
| generic_keywords = ["mystery", "alien", "ufo", "conspiracy", "paranormal"] | |
| for keyword in generic_keywords: | |
| if len(videos_data) >= total_desired_videos: | |
| break | |
| videos = buscar_videos_pexels(keyword, PEXELS_API_KEY, per_page=2) | |
| videos_data.extend(videos) | |
| if not videos_data: | |
| raise ValueError("No se encontraron videos en Pexels.") | |
| video_paths = [] | |
| for video in videos_data: | |
| if 'video_files' not in video or not video['video_files']: | |
| continue | |
| best_quality = max(video['video_files'], key=lambda x: x.get('width', 0) * x.get('height', 0), default=None) | |
| if best_quality and 'link' in best_quality: | |
| path = download_video_file(best_quality['link'], temp_dir_intermediate) | |
| if path: | |
| video_paths.append(path) | |
| temp_intermediate_files.append(path) | |
| if not video_paths: | |
| raise ValueError("No se descargaron videos utilizables.") | |
| # 5. Procesar y concatenar clips de video | |
| current_duration = 0 | |
| min_clip_duration = 0.5 | |
| max_clip_segment = 10.0 | |
| for i, path in enumerate(video_paths): | |
| if current_duration >= audio_duration + max_clip_segment: | |
| break | |
| try: | |
| clip = VideoFileClip(path) | |
| source_clips.append(clip) | |
| if clip.duration is None or clip.duration <= 0: | |
| continue | |
| remaining_needed = audio_duration - current_duration | |
| segment_duration = min(clip.duration, max_clip_segment, remaining_needed + min_clip_duration) | |
| if segment_duration >= min_clip_duration: | |
| sub = clip.subclip(0, segment_duration) | |
| clips_to_concatenate.append(sub) | |
| current_duration += sub.duration | |
| except Exception as e: | |
| logger.warning(f"Error procesando video {path}: {str(e)}") | |
| if not clips_to_concatenate: | |
| raise ValueError("No hay segmentos de video válidos.") | |
| video_base = concatenate_videoclips(clips_to_concatenate, method="chain") | |
| if video_base.duration is None or video_base.duration <= 0: | |
| raise ValueError("Video base inválido.") | |
| # Ajustar duración del video | |
| if video_base.duration < audio_duration: | |
| num_full_repeats = int(audio_duration // video_base.duration) | |
| remaining_duration = audio_duration % video_base.duration | |
| repeated_clips_list = [video_base] * num_full_repeats | |
| if remaining_duration > 0: | |
| remaining_clip = video_base.subclip(0, remaining_duration) | |
| repeated_clips_list.append(remaining_clip) | |
| video_base = concatenate_videoclips(repeated_clips_list, method="chain") | |
| elif video_base.duration > audio_duration: | |
| video_base = video_base.subclip(0, audio_duration) | |
| # 6. Manejar música de fondo | |
| final_audio = audio_tts | |
| if musica_file: | |
| try: | |
| music_path = os.path.join(temp_dir_intermediate, "musica_bg.mp3") | |
| shutil.copyfile(musica_file.name if hasattr(musica_file, 'name') else musica_file, music_path) | |
| temp_intermediate_files.append(music_path) | |
| musica_audio_original = AudioFileClip(music_path) | |
| if musica_audio_original.duration > 0: | |
| musica_audio = loop_audio_to_length(musica_audio_original, video_base.duration) | |
| final_audio = CompositeAudioClip([ | |
| musica_audio.volumex(0.2), | |
| audio_tts.volumex(1.0) | |
| ]) | |
| except Exception as e: | |
| logger.warning(f"Error procesando música: {str(e)}") | |
| final_audio = audio_tts | |
| if abs(final_audio.duration - video_base.duration) > 0.2: | |
| final_audio = final_audio.subclip(0, video_base.duration) | |
| # 7. Combinar audio y video | |
| video_final = video_base.set_audio(final_audio) | |
| output_filename = f"video_{int(datetime.now().timestamp())}.mp4" | |
| output_path = os.path.join(temp_dir_intermediate, output_filename) | |
| persistent_dir = "/data" | |
| os.makedirs(persistent_dir, exist_ok=True) | |
| persistent_path = os.path.join(persistent_dir, output_filename) | |
| video_final.write_videofile( | |
| output_path, | |
| fps=24, | |
| threads=2, | |
| codec="libx264", | |
| audio_codec="aac", | |
| preset="medium", | |
| ffmpeg_params=['-vf', 'scale=1920:1080:force_original_aspect_ratio=decrease,pad=1920:1080:-1:-1:color=black', '-crf', '23'], | |
| logger='bar' | |
| ) | |
| shutil.move(output_path, persistent_path) | |
| download_url = f"https://gnosticdev-invideo-basic.hf.space/file={persistent_path}" | |
| logger.info(f"Video guardado en: {persistent_path}") | |
| logger.info(f"URL de descarga: {download_url}") | |
| total_time = (datetime.now() - start_time).total_seconds() | |
| logger.info(f"Video generado en {total_time:.2f}s") | |
| return persistent_path, download_url | |
| except ValueError as ve: | |
| logger.error(f"Error controlado: {str(ve)}") | |
| raise | |
| except Exception as e: | |
| logger.critical(f"Error crítico: {str(e)}") | |
| raise | |
| finally: | |
| for clip in source_clips + clips_to_concatenate: | |
| try: | |
| clip.close() | |
| except: | |
| pass | |
| if audio_tts_original: | |
| try: | |
| audio_tts_original.close() | |
| except: | |
| pass | |
| if musica_audio: | |
| try: | |
| musica_audio.close() | |
| except: | |
| pass | |
| if musica_audio_original: | |
| try: | |
| musica_audio_original.close() | |
| except: | |
| pass | |
| if video_base: | |
| try: | |
| video_base.close() | |
| except: | |
| pass | |
| if video_final: | |
| try: | |
| video_final.close() | |
| except: | |
| pass | |
| for path in temp_intermediate_files: | |
| if os.path.isfile(path) and path != persistent_path: | |
| try: | |
| os.remove(path) | |
| except: | |
| logger.warning(f"No se pudo eliminar {path}") | |
| try: | |
| if os.path.exists(temp_dir_intermediate): | |
| shutil.rmtree(temp_dir_intermediate) | |
| except: | |
| logger.warning(f"No se pudo eliminar directorio temporal {temp_dir_intermediate}") | |
| async def run_app_async(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice): | |
| logger.info("="*80) | |
| logger.info("SOLICITUD RECIBIDA EN INTERFAZ") | |
| input_text = prompt_ia if prompt_type == "Generar Guion con IA" else prompt_manual | |
| output_video = None | |
| output_file = None | |
| status_msg = gr.update(value="⏳ Procesando... Esto puede tomar hasta 1 hora.") | |
| if not input_text or not input_text.strip(): | |
| logger.warning("Texto de entrada vacío.") | |
| return None, None, gr.update(value="⚠️ Ingresa texto para el guion o tema.") | |
| voice_ids_disponibles = [v[1] for v in AVAILABLE_VOICES] | |
| if selected_voice not in voice_ids_disponibles: | |
| logger.warning(f"Voz inválida: '{selected_voice}'. Usando voz por defecto: {DEFAULT_VOICE_ID}") | |
| selected_voice = DEFAULT_VOICE_ID | |
| try: | |
| logger.info("Iniciando generación de video...") | |
| video_path, download_url = await crear_video_async(prompt_type, input_text, selected_voice, musica_file) | |
| if video_path and os.path.exists(video_path): | |
| output_video = video_path | |
| output_file = video_path | |
| status_msg = gr.update(value=f"✅ Video generado exitosamente. Descarga: {download_url}") | |
| logger.info(f"Retornando video_path: {video_path}, URL: {download_url}") | |
| else: | |
| status_msg = gr.update(value="❌ Error: Falló la generación del video.") | |
| logger.error("No se generó video_path válido.") | |
| except ValueError as ve: | |
| logger.warning(f"Error de validación: {str(ve)}") | |
| status_msg = gr.update(value=f"⚠️ Error: {str(ve)}") | |
| except Exception as e: | |
| logger.critical(f"Error crítico: {str(e)}") | |
| status_msg = gr.update(value=f"❌ Error inesperado: {str(e)}") | |
| finally: | |
| logger.info("Finalizando run_app_async") | |
| return output_video, gr.File(value=output_file, label="Descargar Video"), status_msg | |
| def run_app(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice): | |
| return asyncio.run(run_app_async(prompt_type, prompt_ia, prompt_manual, musica_file, selected_voice)) | |
| # Interfaz de Gradio | |
| with gr.Blocks(title="Generador de Videos con IA", theme=gr.themes.Soft()) as app: | |
| gr.Markdown("# 🎬 Generador Automático de Videos con IA") | |
| gr.Markdown("Genera videos cortos a partir de un tema o guion, usando imágenes de archivo de Pexels y voz generada.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_type = gr.Radio( | |
| ["Generar Guion con IA", "Usar Mi Guion"], | |
| label="Método de Entrada", | |
| value="Generar Guion con IA" | |
| ) | |
| with gr.Column(visible=True) as ia_guion_column: | |
| prompt_ia = gr.Textbox( | |
| label="Tema para IA", | |
| lines=2, | |
| placeholder="Ej: Un paisaje natural con montañas y ríos al amanecer...", | |
| max_lines=4 | |
| ) | |
| with gr.Column(visible=False) as manual_guion_column: | |
| prompt_manual = gr.Textbox( | |
| label="Tu Guion Completo", | |
| lines=5, | |
| placeholder="Ej: En este video exploraremos los misterios del océano...", | |
| max_lines=10 | |
| ) | |
| musica_input = gr.Audio( | |
| label="Música de fondo (opcional)", | |
| type="filepath", | |
| interactive=True | |
| ) | |
| voice_dropdown = gr.Dropdown( | |
| label="Seleccionar Voz para Guion", | |
| choices=AVAILABLE_VOICES, | |
| value=DEFAULT_VOICE_ID, | |
| interactive=True | |
| ) | |
| generate_btn = gr.Button("✨ Generar Video", variant="primary") | |
| with gr.Column(): | |
| video_output = gr.Video( | |
| label="Previsualización del Video Generado", | |
| interactive=False, | |
| height=400 | |
| ) | |
| file_output = gr.File( | |
| label="Descargar Archivo de Video", | |
| interactive=False, | |
| visible=False | |
| ) | |
| status_output = gr.Textbox( | |
| label="Estado", | |
| interactive=False, | |
| placeholder="Esperando acción...", | |
| value="Esperando entrada..." | |
| ) | |
| prompt_type.change( | |
| fn=lambda x: (gr.update(visible=x == "Generar Guion con IA"), gr.update(visible=x == "Usar Mi Guion")), | |
| inputs=prompt_type, | |
| outputs=[ia_guion_column, manual_guion_column] | |
| ) | |
| generate_btn.click( | |
| fn=lambda: (None, None, gr.update(value="⏳ Procesando... Esto puede tomar hasta 1 hora.")), | |
| outputs=[video_output, file_output, status_output] | |
| ).then( | |
| fn=run_app, | |
| inputs=[prompt_type, prompt_ia, prompt_manual, musica_input, voice_dropdown], | |
| outputs=[video_output, file_output, status_output], | |
| queue=True | |
| ).then( | |
| fn=lambda video_path, file_output, status_msg: gr.update(visible=file_output.value is not None), | |
| inputs=[video_output, file_output, status_output], | |
| outputs=[file_output] | |
| ) | |
| gr.Markdown("### Instrucciones:") | |
| gr.Markdown(""" | |
| 1. Configura la variable de entorno `PEXELS_API_KEY`. | |
| 2. Selecciona el tipo de entrada: "Generar Guion con IA" o "Usar Mi Guion". | |
| 3. Sube música (opcional). | |
| 4. Selecciona la voz. | |
| 5. Haz clic en "✨ Generar Video". | |
| 6. Revisa el estado. Si el video se genera, estará disponible en /data. | |
| 7. Consulta `video_generator_full.log` para detalles. | |
| """) | |
| if __name__ == "__main__": | |
| logger.info("Verificando dependencias...") | |
| try: | |
| from moviepy.editor import ColorClip | |
| temp_clip = ColorClip((100,100), color=(255,0,0), duration=0.1) | |
| temp_clip.close() | |
| logger.info("MoviePy y FFmpeg accesibles.") | |
| except Exception as e: | |
| logger.critical(f"Fallo en dependencias: {e}") | |
| raise | |
| os.environ['GRADIO_SERVER_TIMEOUT'] = '3600' | |
| logger.info("Iniciando aplicación Gradio...") | |
| try: | |
| app.launch(server_name="0.0.0.0", server_port=7860, share=False) | |
| except Exception as e: | |
| logger.critical(f"No se pudo iniciar la app: {str(e)}") | |
| raise |