Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,120 +1,136 @@
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
import requests
|
| 4 |
-
import numpy as np
|
| 5 |
import gradio as gr
|
| 6 |
-
from datetime import datetime
|
| 7 |
from moviepy.editor import *
|
| 8 |
-
from transformers import pipeline, AutoTokenizer, AutoModel
|
| 9 |
-
import torch
|
| 10 |
-
import torch.nn.functional as F
|
| 11 |
import edge_tts
|
| 12 |
import tempfile
|
| 13 |
import logging
|
| 14 |
-
from
|
|
|
|
| 15 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 16 |
-
from nltk.tokenize import sent_tokenize
|
| 17 |
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
nltk.download('punkt')
|
| 21 |
-
|
| 22 |
-
# Configuraci贸n avanzada
|
| 23 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
# Configuraci贸n de modelos
|
| 27 |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
# 1. Modelo para generaci贸n de guiones (MBART grande para espa帽ol)
|
| 31 |
-
script_generator = pipeline(
|
| 32 |
-
"text2text-generation",
|
| 33 |
-
model="facebook/mbart-large-50",
|
| 34 |
-
tokenizer="facebook/mbart-large-50",
|
| 35 |
-
device=0 if torch.cuda.is_available() else -1
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
# 2. Modelo para embeddings sem谩nticos (multiling眉e)
|
| 39 |
-
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
| 40 |
-
embedding_model = AutoModel.from_pretrained("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
VOICES =
|
| 44 |
VOICE_NAMES = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in VOICES]
|
| 45 |
|
| 46 |
-
def
|
| 47 |
-
"""Genera
|
| 48 |
try:
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
max_length=1000,
|
| 52 |
-
num_beams=5,
|
| 53 |
temperature=0.7,
|
| 54 |
top_k=50,
|
| 55 |
top_p=0.95,
|
| 56 |
-
|
| 57 |
)
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
except Exception as e:
|
| 60 |
-
logger.error(f"Error
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return f"""
|
| 63 |
-
隆Hola a todos!
|
| 64 |
-
En este video
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
"""
|
| 70 |
|
| 71 |
-
def
|
| 72 |
-
"""
|
| 73 |
-
inputs = tokenizer(textos, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
| 74 |
-
with torch.no_grad():
|
| 75 |
-
outputs = embedding_model(**inputs)
|
| 76 |
-
embeddings = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
| 77 |
-
return embeddings
|
| 78 |
-
|
| 79 |
-
def buscar_videos_semanticos(query, guion, num_videos=5):
|
| 80 |
-
"""Busca videos usando an谩lisis sem谩ntico"""
|
| 81 |
try:
|
| 82 |
# Dividir el guion en oraciones
|
| 83 |
oraciones = sent_tokenize(guion)
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
# Embedding para la consulta general
|
| 89 |
-
embedding_query = obtener_embeddings([query])[0]
|
| 90 |
-
|
| 91 |
-
# Calcular similitud entre consulta y cada oraci贸n
|
| 92 |
-
similitudes = cosine_similarity([embedding_query], embeddings_oraciones)[0]
|
| 93 |
-
|
| 94 |
-
# Seleccionar las oraciones m谩s relevantes
|
| 95 |
-
indices_relevantes = np.argsort(similitudes)[-3:]
|
| 96 |
-
oraciones_relevantes = [oraciones[i] for i in indices_relevantes]
|
| 97 |
-
|
| 98 |
-
# Extraer palabras clave de las oraciones relevantes
|
| 99 |
-
vectorizer = TfidfVectorizer(stop_words=['el', 'la', 'los', 'las', 'de', 'en', 'y'])
|
| 100 |
-
tfidf = vectorizer.fit_transform(oraciones_relevantes)
|
| 101 |
palabras = vectorizer.get_feature_names_out()
|
| 102 |
scores = np.asarray(tfidf.sum(axis=0)).ravel()
|
| 103 |
indices_importantes = np.argsort(scores)[-5:]
|
| 104 |
palabras_clave = [palabras[i] for i in indices_importantes]
|
| 105 |
|
| 106 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
headers = {"Authorization": PEXELS_API_KEY}
|
| 108 |
response = requests.get(
|
| 109 |
-
f"https://api.pexels.com/videos/search?query={'+'.join(
|
| 110 |
headers=headers,
|
| 111 |
-
timeout=
|
| 112 |
)
|
| 113 |
|
| 114 |
videos = response.json().get('videos', [])
|
| 115 |
-
logger.info(f"
|
| 116 |
|
| 117 |
-
# Seleccionar
|
| 118 |
videos_ordenados = sorted(
|
| 119 |
videos,
|
| 120 |
key=lambda x: x.get('width', 0) * x.get('height', 0),
|
|
@@ -124,31 +140,32 @@ def buscar_videos_semanticos(query, guion, num_videos=5):
|
|
| 124 |
return videos_ordenados[:num_videos]
|
| 125 |
|
| 126 |
except Exception as e:
|
| 127 |
-
logger.error(f"Error en b煤squeda
|
| 128 |
-
#
|
| 129 |
response = requests.get(
|
| 130 |
-
f"https://api.pexels.com/videos/search?query={
|
| 131 |
headers={"Authorization": PEXELS_API_KEY},
|
| 132 |
timeout=10
|
| 133 |
)
|
| 134 |
return response.json().get('videos', [])[:num_videos]
|
| 135 |
|
| 136 |
-
def
|
| 137 |
try:
|
| 138 |
# 1. Generar o usar guion
|
| 139 |
-
guion = custom_script if custom_script else
|
| 140 |
-
logger.info(f"Guion generado
|
| 141 |
|
| 142 |
# 2. Seleccionar voz
|
| 143 |
voz_seleccionada = VOICES[voz_index]['ShortName']
|
| 144 |
|
| 145 |
-
# 3. Generar
|
| 146 |
voz_archivo = "voz.mp3"
|
| 147 |
-
|
| 148 |
-
|
|
|
|
| 149 |
|
| 150 |
-
# 4. Buscar videos
|
| 151 |
-
videos_data =
|
| 152 |
|
| 153 |
if not videos_data:
|
| 154 |
raise Exception("No se encontraron videos relevantes")
|
|
@@ -175,43 +192,42 @@ def crear_video_inteligente(prompt, custom_script, voz_index, musica=None):
|
|
| 175 |
clip = VideoFileClip(temp_video.name)
|
| 176 |
clips.append(clip)
|
| 177 |
|
| 178 |
-
# 6.
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
|
|
|
| 182 |
if musica:
|
| 183 |
musica_clip = AudioFileClip(musica.name)
|
| 184 |
-
if musica_clip.duration <
|
| 185 |
-
musica_clip = musica_clip.loop(duration=
|
|
|
|
|
|
|
| 186 |
audio = CompositeAudioClip([audio, musica_clip.volumex(0.25)])
|
| 187 |
|
| 188 |
-
|
| 189 |
-
# Calcular duraci贸n por clip
|
| 190 |
-
clip_durations = [c.duration for c in clips]
|
| 191 |
-
total_clip_duration = sum(clip_durations)
|
| 192 |
-
|
| 193 |
-
# Ajustar clips para que coincidan con la duraci贸n del audio
|
| 194 |
-
if total_clip_duration < total_duration:
|
| 195 |
-
# Repetir la secuencia de videos si es necesario
|
| 196 |
-
repetitions = int(total_duration / total_clip_duration) + 1
|
| 197 |
-
extended_clips = clips * repetitions
|
| 198 |
-
final_clip = concatenate_videoclips(extended_clips).subclip(0, total_duration)
|
| 199 |
-
else:
|
| 200 |
-
# Ajustar velocidad para coincidir con la duraci贸n
|
| 201 |
-
speed_factor = total_clip_duration / total_duration
|
| 202 |
-
adjusted_clips = [clip.fx(vfx.speedx, speed_factor) for clip in clips]
|
| 203 |
-
final_clip = concatenate_videoclips(adjusted_clips)
|
| 204 |
-
|
| 205 |
-
final_clip = final_clip.set_audio(audio)
|
| 206 |
|
| 207 |
-
#
|
| 208 |
output_path = f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
|
| 209 |
-
|
| 210 |
output_path,
|
| 211 |
codec="libx264",
|
| 212 |
audio_codec="aac",
|
| 213 |
-
threads=
|
| 214 |
-
preset='
|
| 215 |
fps=24
|
| 216 |
)
|
| 217 |
|
|
@@ -221,79 +237,57 @@ def crear_video_inteligente(prompt, custom_script, voz_index, musica=None):
|
|
| 221 |
logger.error(f"ERROR: {str(e)}")
|
| 222 |
return None
|
| 223 |
finally:
|
| 224 |
-
# Limpieza
|
| 225 |
if os.path.exists(voz_archivo):
|
| 226 |
os.remove(voz_archivo)
|
| 227 |
|
| 228 |
# Interfaz profesional
|
| 229 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Generador de Videos
|
| 230 |
-
gr.Markdown("# 馃幀 GENERADOR
|
| 231 |
|
| 232 |
with gr.Row():
|
| 233 |
with gr.Column(scale=1):
|
| 234 |
gr.Markdown("### Configuraci贸n del Contenido")
|
| 235 |
-
prompt = gr.Textbox(label="Tema principal", placeholder="Ej: 'Los misterios
|
| 236 |
custom_script = gr.TextArea(
|
| 237 |
label="Guion personalizado (opcional)",
|
| 238 |
-
placeholder="
|
| 239 |
lines=8
|
| 240 |
)
|
| 241 |
voz = gr.Dropdown(
|
| 242 |
-
label="Selecciona una voz
|
| 243 |
choices=VOICE_NAMES,
|
| 244 |
value=VOICE_NAMES[0],
|
| 245 |
type="index"
|
| 246 |
)
|
| 247 |
musica = gr.File(
|
| 248 |
-
label="M煤sica de fondo
|
| 249 |
-
file_types=["audio"]
|
| 250 |
-
type="filepath"
|
| 251 |
)
|
| 252 |
-
btn = gr.Button("馃殌 Generar Video
|
| 253 |
|
| 254 |
with gr.Column(scale=2):
|
| 255 |
output = gr.Video(
|
| 256 |
label="Video Resultante",
|
| 257 |
format="mp4",
|
| 258 |
-
interactive=False
|
| 259 |
-
elem_id="video-output"
|
| 260 |
)
|
| 261 |
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
""
|
| 270 |
-
|
| 271 |
-
# Ejemplos profesionales
|
| 272 |
-
gr.Examples(
|
| 273 |
-
examples=[
|
| 274 |
-
["Los secretos de la inteligencia artificial", "", 0, None],
|
| 275 |
-
["Lugares hist贸ricos de Europa", "", 3, None],
|
| 276 |
-
["Innovaciones tecnol贸gicas del futuro", "", 5, None]
|
| 277 |
-
],
|
| 278 |
-
inputs=[prompt, custom_script, voz, musica],
|
| 279 |
-
label="Ejemplos profesionales"
|
| 280 |
-
)
|
| 281 |
|
| 282 |
btn.click(
|
| 283 |
-
fn=
|
| 284 |
inputs=[prompt, custom_script, voz, musica],
|
| 285 |
outputs=output
|
| 286 |
)
|
| 287 |
|
| 288 |
-
# CSS para mejor visualizaci贸n
|
| 289 |
-
app.css = """
|
| 290 |
-
#video-output {
|
| 291 |
-
border-radius: 12px;
|
| 292 |
-
box-shadow: 0 6px 16px rgba(0,0,0,0.15);
|
| 293 |
-
margin: 20px auto;
|
| 294 |
-
max-width: 100%;
|
| 295 |
-
}
|
| 296 |
-
"""
|
| 297 |
-
|
| 298 |
if __name__ == "__main__":
|
| 299 |
app.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
import requests
|
|
|
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
from moviepy.editor import *
|
|
|
|
|
|
|
|
|
|
| 6 |
import edge_tts
|
| 7 |
import tempfile
|
| 8 |
import logging
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
import numpy as np
|
| 11 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
|
| 12 |
import nltk
|
| 13 |
+
from nltk.tokenize import sent_tokenize
|
| 14 |
+
import random
|
| 15 |
+
from transformers import pipeline
|
| 16 |
+
import torch
|
| 17 |
|
| 18 |
+
# Configuraci贸n inicial
|
| 19 |
nltk.download('punkt')
|
|
|
|
|
|
|
| 20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
# Configuraci贸n de modelos
|
| 24 |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
|
| 25 |
+
MODEL_NAME = "DeepESP/gpt2-spanish" # Modelo en espa帽ol m谩s ligero
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Lista de voces disponibles
|
| 28 |
+
VOICES = asyncio.run(edge_tts.list_voices())
|
| 29 |
VOICE_NAMES = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in VOICES]
|
| 30 |
|
| 31 |
+
def generar_guion_profesional(prompt):
|
| 32 |
+
"""Genera guiones detallados con sistema de 3 niveles"""
|
| 33 |
try:
|
| 34 |
+
# 1. Intento con modelo principal
|
| 35 |
+
generator = pipeline(
|
| 36 |
+
"text-generation",
|
| 37 |
+
model=MODEL_NAME,
|
| 38 |
+
device=0 if torch.cuda.is_available() else -1
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
response = generator(
|
| 42 |
+
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. "
|
| 43 |
+
"La estructura debe incluir:\n"
|
| 44 |
+
"1. Introducci贸n atractiva\n"
|
| 45 |
+
"2. Tres secciones detalladas con subt铆tulos\n"
|
| 46 |
+
"3. Conclusi贸n impactante\n"
|
| 47 |
+
"Usa un estilo natural para narraci贸n:",
|
| 48 |
max_length=1000,
|
|
|
|
| 49 |
temperature=0.7,
|
| 50 |
top_k=50,
|
| 51 |
top_p=0.95,
|
| 52 |
+
num_return_sequences=1
|
| 53 |
)
|
| 54 |
+
|
| 55 |
+
guion = response[0]['generated_text']
|
| 56 |
+
|
| 57 |
+
# 2. Verificar calidad del guion
|
| 58 |
+
if len(guion.split()) < 100: # Si es muy corto
|
| 59 |
+
raise ValueError("Guion demasiado breve")
|
| 60 |
+
|
| 61 |
+
return guion
|
| 62 |
+
|
| 63 |
except Exception as e:
|
| 64 |
+
logger.error(f"Error generando guion: {str(e)}")
|
| 65 |
+
|
| 66 |
+
# 3. Respaldos inteligentes
|
| 67 |
+
temas = {
|
| 68 |
+
"historia": ["or铆genes", "eventos clave", "impacto actual"],
|
| 69 |
+
"tecnolog铆a": ["funcionamiento", "aplicaciones", "futuro"],
|
| 70 |
+
"ciencia": ["teor铆as", "evidencia", "implicaciones"],
|
| 71 |
+
"misterio": ["enigma", "teor铆as", "explicaciones"],
|
| 72 |
+
"arte": ["or铆genes", "caracter铆sticas", "influencia"]
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
# Detectar categor铆a del tema
|
| 76 |
+
categoria = "general"
|
| 77 |
+
for key in temas:
|
| 78 |
+
if key in prompt.lower():
|
| 79 |
+
categoria = key
|
| 80 |
+
break
|
| 81 |
+
|
| 82 |
+
puntos_clave = temas.get(categoria, ["aspectos importantes", "datos relevantes", "conclusiones"])
|
| 83 |
+
|
| 84 |
+
# Generar guion de respaldo con estructura profesional
|
| 85 |
return f"""
|
| 86 |
+
隆Hola a todos! Bienvenidos a este an谩lisis completo sobre {prompt}.
|
| 87 |
+
En este video exploraremos a fondo este fascinante tema a trav茅s de tres secciones clave.
|
| 88 |
+
|
| 89 |
+
SECCI脫N 1: {puntos_clave[0].capitalize()}
|
| 90 |
+
Comenzaremos analizando los {puntos_clave[0]} fundamentales.
|
| 91 |
+
Esto nos permitir谩 entender mejor la base de {prompt}.
|
| 92 |
+
|
| 93 |
+
SECCI脫N 2: {puntos_clave[1].capitalize()}
|
| 94 |
+
En esta parte, examinaremos los {puntos_clave[1]} m谩s relevantes
|
| 95 |
+
y c贸mo se relacionan con el tema principal.
|
| 96 |
+
|
| 97 |
+
SECCI脫N 3: {puntos_clave[2].capitalize()}
|
| 98 |
+
Finalmente, exploraremos las {puntos_clave[2]}
|
| 99 |
+
y qu茅 significan para el futuro de este campo.
|
| 100 |
+
|
| 101 |
+
驴Listos para profundizar? 隆Empecemos!
|
| 102 |
"""
|
| 103 |
|
| 104 |
+
def buscar_videos_avanzado(prompt, guion, num_videos=5):
|
| 105 |
+
"""B煤squeda inteligente de videos usando an谩lisis de contenido"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
try:
|
| 107 |
# Dividir el guion en oraciones
|
| 108 |
oraciones = sent_tokenize(guion)
|
| 109 |
|
| 110 |
+
# Extraer palabras clave con TF-IDF
|
| 111 |
+
vectorizer = TfidfVectorizer(stop_words=['el', 'la', 'los', 'las', 'de', 'en', 'y', 'que'])
|
| 112 |
+
tfidf = vectorizer.fit_transform(oraciones)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
palabras = vectorizer.get_feature_names_out()
|
| 114 |
scores = np.asarray(tfidf.sum(axis=0)).ravel()
|
| 115 |
indices_importantes = np.argsort(scores)[-5:]
|
| 116 |
palabras_clave = [palabras[i] for i in indices_importantes]
|
| 117 |
|
| 118 |
+
# Mezclar palabras clave del prompt y del guion
|
| 119 |
+
palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower())
|
| 120 |
+
todas_palabras = list(set(palabras_clave + palabras_prompt))[:5]
|
| 121 |
+
|
| 122 |
+
# Buscar en Pexels
|
| 123 |
headers = {"Authorization": PEXELS_API_KEY}
|
| 124 |
response = requests.get(
|
| 125 |
+
f"https://api.pexels.com/videos/search?query={'+'.join(todas_palabras)}&per_page={num_videos}",
|
| 126 |
headers=headers,
|
| 127 |
+
timeout=15
|
| 128 |
)
|
| 129 |
|
| 130 |
videos = response.json().get('videos', [])
|
| 131 |
+
logger.info(f"Palabras clave usadas: {todas_palabras}")
|
| 132 |
|
| 133 |
+
# Seleccionar videos de mejor calidad
|
| 134 |
videos_ordenados = sorted(
|
| 135 |
videos,
|
| 136 |
key=lambda x: x.get('width', 0) * x.get('height', 0),
|
|
|
|
| 140 |
return videos_ordenados[:num_videos]
|
| 141 |
|
| 142 |
except Exception as e:
|
| 143 |
+
logger.error(f"Error en b煤squeda de videos: {str(e)}")
|
| 144 |
+
# B煤squeda simple de respaldo
|
| 145 |
response = requests.get(
|
| 146 |
+
f"https://api.pexels.com/videos/search?query={prompt}&per_page={num_videos}",
|
| 147 |
headers={"Authorization": PEXELS_API_KEY},
|
| 148 |
timeout=10
|
| 149 |
)
|
| 150 |
return response.json().get('videos', [])[:num_videos]
|
| 151 |
|
| 152 |
+
def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
|
| 153 |
try:
|
| 154 |
# 1. Generar o usar guion
|
| 155 |
+
guion = custom_script if custom_script else generar_guion_profesional(prompt)
|
| 156 |
+
logger.info(f"Guion generado ({len(guion.split())} palabras)")
|
| 157 |
|
| 158 |
# 2. Seleccionar voz
|
| 159 |
voz_seleccionada = VOICES[voz_index]['ShortName']
|
| 160 |
|
| 161 |
+
# 3. Generar voz
|
| 162 |
voz_archivo = "voz.mp3"
|
| 163 |
+
asyncio.run(edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo))
|
| 164 |
+
audio = AudioFileClip(voz_archivo)
|
| 165 |
+
duracion_total = audio.duration
|
| 166 |
|
| 167 |
+
# 4. Buscar videos relevantes
|
| 168 |
+
videos_data = buscar_videos_avanzado(prompt, guion)
|
| 169 |
|
| 170 |
if not videos_data:
|
| 171 |
raise Exception("No se encontraron videos relevantes")
|
|
|
|
| 192 |
clip = VideoFileClip(temp_video.name)
|
| 193 |
clips.append(clip)
|
| 194 |
|
| 195 |
+
# 6. Calcular duraci贸n por clip
|
| 196 |
+
duracion_por_clip = duracion_total / len(clips)
|
| 197 |
+
|
| 198 |
+
# 7. Procesar clips de video
|
| 199 |
+
clips_procesados = []
|
| 200 |
+
for clip in clips:
|
| 201 |
+
# Si el clip es m谩s corto que la duraci贸n asignada, hacer loop
|
| 202 |
+
if clip.duration < duracion_por_clip:
|
| 203 |
+
clip = clip.loop(duration=duracion_por_clip)
|
| 204 |
+
# Si es m谩s largo, recortar
|
| 205 |
+
else:
|
| 206 |
+
clip = clip.subclip(0, duracion_por_clip)
|
| 207 |
+
clips_procesados.append(clip)
|
| 208 |
+
|
| 209 |
+
# 8. Combinar videos
|
| 210 |
+
video_final = concatenate_videoclips(clips_procesados)
|
| 211 |
|
| 212 |
+
# 9. Procesar m煤sica
|
| 213 |
if musica:
|
| 214 |
musica_clip = AudioFileClip(musica.name)
|
| 215 |
+
if musica_clip.duration < duracion_total:
|
| 216 |
+
musica_clip = musica_clip.loop(duration=duracion_total)
|
| 217 |
+
else:
|
| 218 |
+
musica_clip = musica_clip.subclip(0, duracion_total)
|
| 219 |
audio = CompositeAudioClip([audio, musica_clip.volumex(0.25)])
|
| 220 |
|
| 221 |
+
video_final = video_final.set_audio(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
+
# 10. Exportar video
|
| 224 |
output_path = f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
|
| 225 |
+
video_final.write_videofile(
|
| 226 |
output_path,
|
| 227 |
codec="libx264",
|
| 228 |
audio_codec="aac",
|
| 229 |
+
threads=2,
|
| 230 |
+
preset='fast',
|
| 231 |
fps=24
|
| 232 |
)
|
| 233 |
|
|
|
|
| 237 |
logger.error(f"ERROR: {str(e)}")
|
| 238 |
return None
|
| 239 |
finally:
|
| 240 |
+
# Limpieza de archivos temporales
|
| 241 |
if os.path.exists(voz_archivo):
|
| 242 |
os.remove(voz_archivo)
|
| 243 |
|
| 244 |
# Interfaz profesional
|
| 245 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Generador de Videos Profesional") as app:
|
| 246 |
+
gr.Markdown("# 馃幀 GENERADOR DE VIDEOS CON IA")
|
| 247 |
|
| 248 |
with gr.Row():
|
| 249 |
with gr.Column(scale=1):
|
| 250 |
gr.Markdown("### Configuraci贸n del Contenido")
|
| 251 |
+
prompt = gr.Textbox(label="Tema principal", placeholder="Ej: 'Los misterios de la antigua Grecia'")
|
| 252 |
custom_script = gr.TextArea(
|
| 253 |
label="Guion personalizado (opcional)",
|
| 254 |
+
placeholder="Pega aqu铆 tu propio guion completo...",
|
| 255 |
lines=8
|
| 256 |
)
|
| 257 |
voz = gr.Dropdown(
|
| 258 |
+
label="Selecciona una voz",
|
| 259 |
choices=VOICE_NAMES,
|
| 260 |
value=VOICE_NAMES[0],
|
| 261 |
type="index"
|
| 262 |
)
|
| 263 |
musica = gr.File(
|
| 264 |
+
label="M煤sica de fondo (opcional)",
|
| 265 |
+
file_types=["audio"]
|
|
|
|
| 266 |
)
|
| 267 |
+
btn = gr.Button("馃殌 Generar Video", variant="primary", size="lg")
|
| 268 |
|
| 269 |
with gr.Column(scale=2):
|
| 270 |
output = gr.Video(
|
| 271 |
label="Video Resultante",
|
| 272 |
format="mp4",
|
| 273 |
+
interactive=False
|
|
|
|
| 274 |
)
|
| 275 |
|
| 276 |
+
gr.Examples(
|
| 277 |
+
examples=[
|
| 278 |
+
["Los secretos de las pir谩mides egipcias", "", 5, None],
|
| 279 |
+
["La inteligencia artificial en medicina", "", 3, None],
|
| 280 |
+
["Lugares abandonados m谩s misteriosos", "", 8, None]
|
| 281 |
+
],
|
| 282 |
+
inputs=[prompt, custom_script, voz, musica],
|
| 283 |
+
label="Ejemplos: Haz clic en uno y luego en Generar"
|
| 284 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
btn.click(
|
| 287 |
+
fn=crear_video_profesional,
|
| 288 |
inputs=[prompt, custom_script, voz, musica],
|
| 289 |
outputs=output
|
| 290 |
)
|
| 291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
if __name__ == "__main__":
|
| 293 |
app.launch(server_name="0.0.0.0", server_port=7860)
|