Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,3 @@
|
|
| 1 |
-
import os, re, math, uuid, time, shutil, logging, tempfile, threading, requests, asyncio, numpy as np, json
|
| 2 |
-
from datetime import datetime, timedelta
|
| 3 |
-
from collections import Counter
|
| 4 |
-
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
| 7 |
from huggingface_hub import hf_hub_download
|
|
@@ -10,9 +6,29 @@ import soundfile as sf
|
|
| 10 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
| 11 |
from keybert import KeyBERT
|
| 12 |
from moviepy.editor import (
|
| 13 |
-
VideoFileClip,
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# ------------------- CÓDIGO DEL MOTOR TOUCANTTS (Integrado) -------------------
|
| 18 |
# Este bloque contiene las funciones y clases extraídas para que el TTS funcione sin archivos externos.
|
|
@@ -20,9 +36,11 @@ from moviepy.editor import (
|
|
| 20 |
# --- Contenido de Utility/utils.py ---
|
| 21 |
def float2pcm(sig, dtype='int16'):
|
| 22 |
sig = np.asarray(sig)
|
| 23 |
-
if sig.dtype.kind != 'f':
|
|
|
|
| 24 |
dtype = np.dtype(dtype)
|
| 25 |
-
if dtype.kind not in 'iu':
|
|
|
|
| 26 |
i = np.iinfo(dtype)
|
| 27 |
abs_max = 2 ** (i.bits - 1)
|
| 28 |
offset = i.min + abs_max
|
|
@@ -40,26 +58,20 @@ def load_json_from_path(path):
|
|
| 40 |
class ToucanTTSInterface:
|
| 41 |
def __init__(self, gpu_id="cpu"):
|
| 42 |
self.device = torch.device("cpu") if gpu_id == "cpu" else torch.device("cuda")
|
| 43 |
-
|
| 44 |
tts_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="best.pt")
|
| 45 |
vocoder_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="vocoder.pt")
|
| 46 |
-
|
| 47 |
# Importamos la clase aquí para evitar problemas de dependencias circulares
|
| 48 |
from TrainingInterfaces.Text_to_Spectrogram.ToucanTTS.ToucanTTS import ToucanTTS as ToucanTTS_Model
|
| 49 |
-
|
| 50 |
self.tts_model = ToucanTTS_Model()
|
| 51 |
self.tts_model.load_state_dict(torch.load(tts_model_path, map_location=self.device)["model"])
|
| 52 |
self.vocoder_model = torch.jit.load(vocoder_model_path).to(self.device).eval()
|
| 53 |
-
|
| 54 |
path_to_iso_list = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="iso_to_id.json")
|
| 55 |
self.iso_to_id = load_json_from_path(path_to_iso_list)
|
| 56 |
-
|
| 57 |
self.tts_model.to(self.device)
|
| 58 |
|
| 59 |
def read(self, text, language="spa", accent="spa"):
|
| 60 |
with torch.inference_mode():
|
| 61 |
style_embedding = self.tts_model.style_embedding_function(torch.randn([1, 1, 192]).to(self.device)).squeeze()
|
| 62 |
-
|
| 63 |
output_wave, output_sr, _ = self.tts_model.read(
|
| 64 |
text=text,
|
| 65 |
style_embedding=style_embedding,
|
|
@@ -68,7 +80,7 @@ class ToucanTTSInterface:
|
|
| 68 |
vocoder=self.vocoder_model,
|
| 69 |
device=self.device
|
| 70 |
)
|
| 71 |
-
|
| 72 |
|
| 73 |
# ------------------- Configuración & Globals -------------------
|
| 74 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
@@ -89,7 +101,8 @@ def get_tokenizer():
|
|
| 89 |
if tokenizer is None:
|
| 90 |
logger.info("Cargando tokenizer (primera vez)...")
|
| 91 |
tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish")
|
| 92 |
-
if tokenizer.pad_token is None:
|
|
|
|
| 93 |
return tokenizer
|
| 94 |
|
| 95 |
def get_gpt2_model():
|
|
@@ -106,20 +119,11 @@ def get_kw_model():
|
|
| 106 |
kw_model = KeyBERT("paraphrase-multilingual-MiniLM-L12-v2")
|
| 107 |
return kw_model
|
| 108 |
|
| 109 |
-
class DummyTTS:
|
| 110 |
-
def read(self, text, language="spa", accent="spa"):
|
| 111 |
-
sr = 22050
|
| 112 |
-
dur = max(2.0, min(20.0, len(text) / 10)) # 2–20s según el texto
|
| 113 |
-
t = np.linspace(0, dur, int(sr * dur), False)
|
| 114 |
-
freq = 200.0
|
| 115 |
-
wav = 0.2 * np.sin(2 * np.pi * freq * t).astype(np.float32)
|
| 116 |
-
return sr, wav
|
| 117 |
-
|
| 118 |
def get_tts_interface():
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
|
| 124 |
# ------------------- Funciones del Pipeline de Vídeo -------------------
|
| 125 |
def update_task_progress(task_id, message):
|
|
@@ -133,9 +137,15 @@ def gpt2_script(prompt: str) -> str:
|
|
| 133 |
instruction = f"Escribe un guion corto y coherente sobre: {prompt}"
|
| 134 |
inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512)
|
| 135 |
outputs = local_gpt2_model.generate(
|
| 136 |
-
**inputs,
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
)
|
| 140 |
text = local_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 141 |
return text.split("sobre:")[-1].strip()
|
|
@@ -155,8 +165,12 @@ def keywords(text: str) -> list[str]:
|
|
| 155 |
return [k.replace(" ", "+") for k, _ in kws if k] or ["naturaleza"]
|
| 156 |
|
| 157 |
def pexels_search(query: str, count: int) -> list[dict]:
|
| 158 |
-
res = requests.get(
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
res.raise_for_status()
|
| 161 |
return res.json().get("videos", [])
|
| 162 |
|
|
@@ -167,31 +181,46 @@ def download_file(url: str, folder: str) -> str | None:
|
|
| 167 |
with requests.get(url, stream=True, timeout=60) as r:
|
| 168 |
r.raise_for_status()
|
| 169 |
with open(path, "wb") as f:
|
| 170 |
-
for chunk in r.iter_content(1024 * 1024):
|
|
|
|
| 171 |
return path if os.path.exists(path) and os.path.getsize(path) > 1000 else None
|
| 172 |
except Exception as e:
|
| 173 |
logger.error(f"Fallo al descargar {url}: {e}")
|
| 174 |
return None
|
| 175 |
|
| 176 |
def loop_audio(audio_clip: AudioFileClip, duration: float) -> AudioFileClip:
|
| 177 |
-
if audio_clip.duration >= duration:
|
|
|
|
| 178 |
loops = math.ceil(duration / audio_clip.duration)
|
| 179 |
return concatenate_audioclips([audio_clip] * loops).subclip(0, duration)
|
| 180 |
|
| 181 |
def make_subtitle_clips(script: str, video_w: int, video_h: int, duration: float):
|
| 182 |
sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()]
|
| 183 |
-
if not sentences:
|
|
|
|
| 184 |
total_words = sum(len(s.split()) for s in sentences) or 1
|
| 185 |
time_per_word = duration / total_words
|
| 186 |
clips, current_time = [], 0.0
|
| 187 |
for sentence in sentences:
|
| 188 |
num_words = len(sentence.split())
|
| 189 |
sentence_duration = num_words * time_per_word
|
| 190 |
-
if sentence_duration < 0.1:
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
clips.append(txt_clip)
|
| 196 |
current_time += sentence_duration
|
| 197 |
return clips
|
|
@@ -208,61 +237,78 @@ def build_video(script_text: str, generate_script_flag: bool, music_path: str |
|
|
| 208 |
try:
|
| 209 |
update_task_progress(task_id, "Paso 1/7: Generando guion...")
|
| 210 |
script = gpt2_script(script_text) if generate_script_flag else script_text.strip()
|
| 211 |
-
|
| 212 |
-
update_task_progress(task_id, f"Paso 2/7: Creando audio con ToucanTTS...")
|
| 213 |
voice_path = os.path.join(tmp_dir, "voice.wav")
|
| 214 |
toucan_tts_synth(script, voice_path)
|
| 215 |
voice_clip = AudioFileClip(voice_path)
|
| 216 |
video_duration = voice_clip.duration
|
| 217 |
-
if video_duration < 1:
|
| 218 |
-
|
| 219 |
update_task_progress(task_id, "Paso 3/7: Buscando clips en Pexels...")
|
| 220 |
video_paths = []
|
| 221 |
kws = keywords(script)
|
| 222 |
for i, kw in enumerate(kws):
|
| 223 |
update_task_progress(task_id, f"Paso 3/7: Buscando... (keyword {i+1}/{len(kws)}: '{kw}')")
|
| 224 |
-
if len(video_paths) >= 8:
|
|
|
|
| 225 |
for video_data in pexels_search(kw, 2):
|
| 226 |
-
best_file = max(
|
|
|
|
|
|
|
|
|
|
| 227 |
if best_file:
|
| 228 |
path = download_file(best_file.get('link'), tmp_dir)
|
| 229 |
-
if path:
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
|
|
|
|
|
|
| 233 |
update_task_progress(task_id, f"Paso 4/7: Ensamblando {len(video_paths)} clips...")
|
| 234 |
-
segments = [
|
|
|
|
|
|
|
|
|
|
| 235 |
base_video = concatenate_videoclips(segments, method="chain")
|
| 236 |
if base_video.duration < video_duration:
|
| 237 |
base_video = concatenate_videoclips([base_video] * math.ceil(video_duration / base_video.duration))
|
| 238 |
base_video = base_video.subclip(0, video_duration)
|
| 239 |
-
|
| 240 |
update_task_progress(task_id, "Paso 5/7: Componiendo audio final...")
|
| 241 |
if music_path:
|
| 242 |
music_clip = loop_audio(AudioFileClip(music_path), video_duration).volumex(0.20)
|
| 243 |
final_audio = CompositeAudioClip([music_clip, voice_clip])
|
| 244 |
-
else:
|
| 245 |
-
|
| 246 |
update_task_progress(task_id, "Paso 6/7: Añadiendo subtítulos y efectos...")
|
| 247 |
subtitles = make_subtitle_clips(script, base_video.w, base_video.h, video_duration)
|
| 248 |
grain_effect = make_grain_clip(base_video.size, video_duration)
|
| 249 |
-
|
| 250 |
update_task_progress(task_id, "Paso 7/7: Renderizando vídeo final (esto puede tardar)...")
|
| 251 |
final_video = CompositeVideoClip([base_video, grain_effect, *subtitles]).set_audio(final_audio)
|
| 252 |
output_path = os.path.join(tmp_dir, "final_video.mp4")
|
| 253 |
-
final_video.write_videofile(
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
return output_path
|
| 256 |
finally:
|
| 257 |
-
if 'voice_clip' in locals():
|
| 258 |
-
|
| 259 |
-
if '
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
if 'segments' in locals():
|
| 262 |
-
for seg in segments:
|
|
|
|
| 263 |
|
| 264 |
def worker(task_id: str, mode: str, topic: str, user_script: str, music: str | None):
|
| 265 |
-
# Carga del motor TTS aquí, para que ocurra dentro del hilo de trabajo y no bloquee el arranque
|
| 266 |
global tts_interface
|
| 267 |
if tts_interface is None:
|
| 268 |
update_task_progress(task_id, "Cargando motor de voz ToucanTTS (primera vez, puede tardar)...")
|
|
@@ -275,23 +321,21 @@ def worker(task_id: str, mode: str, topic: str, user_script: str, music: str | N
|
|
| 275 |
# Para una solución real, el código de ToucanTTS tendría que estar en el path.
|
| 276 |
# get_tts_interface()
|
| 277 |
except Exception as e:
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
try:
|
| 282 |
text = topic if mode == "Generar Guion con IA" else user_script
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
except Exception as e:
|
| 291 |
logger.error(f"Error en el worker para la tarea {task_id}: {e}", exc_info=True)
|
| 292 |
TASKS[task_id].update({"status": "error", "error": str(e)})
|
| 293 |
|
| 294 |
-
|
| 295 |
def janitor_thread():
|
| 296 |
while True:
|
| 297 |
time.sleep(3600)
|
|
@@ -314,45 +358,71 @@ def generate_and_monitor(mode, topic, user_script, music):
|
|
| 314 |
if not content.strip():
|
| 315 |
yield "Por favor, ingresa un tema o guion.", None, None
|
| 316 |
return
|
| 317 |
-
|
| 318 |
task_id = uuid.uuid4().hex[:8]
|
| 319 |
-
TASKS[task_id] = {
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
worker_thread.start()
|
| 323 |
-
|
| 324 |
while TASKS[task_id]["status"] == "processing":
|
| 325 |
yield TASKS[task_id]['progress_log'], None, None
|
| 326 |
time.sleep(1)
|
| 327 |
-
|
| 328 |
if TASKS[task_id]["status"] == "error":
|
| 329 |
yield f"❌ Error: {TASKS[task_id]['error']}", None, None
|
| 330 |
elif TASKS[task_id]["status"] == "done":
|
| 331 |
yield "✅ ¡Vídeo completado!", TASKS[task_id]['result'], TASKS[task_id]['result']
|
| 332 |
|
|
|
|
| 333 |
with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo:
|
| 334 |
gr.Markdown("# 🎬 Generador de Vídeos con IA")
|
| 335 |
gr.Markdown("Crea vídeos a partir de texto con voz, música y efectos visuales. El progreso se mostrará en tiempo real.")
|
| 336 |
-
|
| 337 |
with gr.Row():
|
| 338 |
with gr.Column(scale=2):
|
| 339 |
-
mode_radio = gr.Radio(
|
| 340 |
-
|
| 341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
music_upload = gr.Audio(type="filepath", label="Música de fondo (opcional)")
|
| 343 |
submit_button = gr.Button("✨ Generar Vídeo", variant="primary")
|
| 344 |
-
|
| 345 |
with gr.Column(scale=2):
|
| 346 |
gr.Markdown("## Progreso y Resultados")
|
| 347 |
-
progress_log = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
video_output = gr.Video(label="Resultado del Vídeo")
|
| 349 |
download_file_output = gr.File(label="Descargar Fichero")
|
| 350 |
|
| 351 |
def toggle_textboxes(mode):
|
| 352 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
-
mode_radio.change(toggle_textboxes, inputs=mode_radio, outputs=[topic_textbox, script_textbox])
|
| 355 |
-
|
| 356 |
submit_button.click(
|
| 357 |
fn=generate_and_monitor,
|
| 358 |
inputs=[mode_radio, topic_textbox, script_textbox, music_upload],
|
|
@@ -360,4 +430,4 @@ with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo:
|
|
| 360 |
)
|
| 361 |
|
| 362 |
if __name__ == "__main__":
|
| 363 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 6 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
| 7 |
from keybert import KeyBERT
|
| 8 |
from moviepy.editor import (
|
| 9 |
+
VideoFileClip,
|
| 10 |
+
AudioFileClip,
|
| 11 |
+
concatenate_videoclips,
|
| 12 |
+
concatenate_audioclips,
|
| 13 |
+
CompositeAudioClip,
|
| 14 |
+
AudioClip,
|
| 15 |
+
TextClip,
|
| 16 |
+
CompositeVideoClip,
|
| 17 |
+
VideoClip
|
| 18 |
)
|
| 19 |
+
import numpy as np
|
| 20 |
+
import json
|
| 21 |
+
import logging
|
| 22 |
+
import os
|
| 23 |
+
import requests
|
| 24 |
+
import re
|
| 25 |
+
import math
|
| 26 |
+
import tempfile
|
| 27 |
+
import shutil
|
| 28 |
+
import uuid
|
| 29 |
+
import threading
|
| 30 |
+
import time
|
| 31 |
+
from datetime import datetime, timedelta
|
| 32 |
|
| 33 |
# ------------------- CÓDIGO DEL MOTOR TOUCANTTS (Integrado) -------------------
|
| 34 |
# Este bloque contiene las funciones y clases extraídas para que el TTS funcione sin archivos externos.
|
|
|
|
| 36 |
# --- Contenido de Utility/utils.py ---
|
| 37 |
def float2pcm(sig, dtype='int16'):
|
| 38 |
sig = np.asarray(sig)
|
| 39 |
+
if sig.dtype.kind != 'f':
|
| 40 |
+
raise TypeError("'sig' must be a float array")
|
| 41 |
dtype = np.dtype(dtype)
|
| 42 |
+
if dtype.kind not in 'iu':
|
| 43 |
+
raise TypeError("'dtype' must be an integer type")
|
| 44 |
i = np.iinfo(dtype)
|
| 45 |
abs_max = 2 ** (i.bits - 1)
|
| 46 |
offset = i.min + abs_max
|
|
|
|
| 58 |
class ToucanTTSInterface:
|
| 59 |
def __init__(self, gpu_id="cpu"):
|
| 60 |
self.device = torch.device("cpu") if gpu_id == "cpu" else torch.device("cuda")
|
|
|
|
| 61 |
tts_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="best.pt")
|
| 62 |
vocoder_model_path = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="vocoder.pt")
|
|
|
|
| 63 |
# Importamos la clase aquí para evitar problemas de dependencias circulares
|
| 64 |
from TrainingInterfaces.Text_to_Spectrogram.ToucanTTS.ToucanTTS import ToucanTTS as ToucanTTS_Model
|
|
|
|
| 65 |
self.tts_model = ToucanTTS_Model()
|
| 66 |
self.tts_model.load_state_dict(torch.load(tts_model_path, map_location=self.device)["model"])
|
| 67 |
self.vocoder_model = torch.jit.load(vocoder_model_path).to(self.device).eval()
|
|
|
|
| 68 |
path_to_iso_list = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="iso_to_id.json")
|
| 69 |
self.iso_to_id = load_json_from_path(path_to_iso_list)
|
|
|
|
| 70 |
self.tts_model.to(self.device)
|
| 71 |
|
| 72 |
def read(self, text, language="spa", accent="spa"):
|
| 73 |
with torch.inference_mode():
|
| 74 |
style_embedding = self.tts_model.style_embedding_function(torch.randn([1, 1, 192]).to(self.device)).squeeze()
|
|
|
|
| 75 |
output_wave, output_sr, _ = self.tts_model.read(
|
| 76 |
text=text,
|
| 77 |
style_embedding=style_embedding,
|
|
|
|
| 80 |
vocoder=self.vocoder_model,
|
| 81 |
device=self.device
|
| 82 |
)
|
| 83 |
+
return output_sr, output_wave.cpu().numpy()
|
| 84 |
|
| 85 |
# ------------------- Configuración & Globals -------------------
|
| 86 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
| 101 |
if tokenizer is None:
|
| 102 |
logger.info("Cargando tokenizer (primera vez)...")
|
| 103 |
tokenizer = GPT2Tokenizer.from_pretrained("datificate/gpt2-small-spanish")
|
| 104 |
+
if tokenizer.pad_token is None:
|
| 105 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 106 |
return tokenizer
|
| 107 |
|
| 108 |
def get_gpt2_model():
|
|
|
|
| 119 |
kw_model = KeyBERT("paraphrase-multilingual-MiniLM-L12-v2")
|
| 120 |
return kw_model
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
def get_tts_interface():
|
| 123 |
+
# Esta función ahora es un punto de entrada para el motor ToucanTTS
|
| 124 |
+
# La carga real se hará dentro de la función de síntesis para manejar el primer uso
|
| 125 |
+
# De momento, la dejamos como placeholder por si se necesita inicializar algo globalmente
|
| 126 |
+
pass
|
| 127 |
|
| 128 |
# ------------------- Funciones del Pipeline de Vídeo -------------------
|
| 129 |
def update_task_progress(task_id, message):
|
|
|
|
| 137 |
instruction = f"Escribe un guion corto y coherente sobre: {prompt}"
|
| 138 |
inputs = local_tokenizer(instruction, return_tensors="pt", truncation=True, max_length=512)
|
| 139 |
outputs = local_gpt2_model.generate(
|
| 140 |
+
**inputs,
|
| 141 |
+
max_length=160 + inputs["input_ids"].shape[1],
|
| 142 |
+
do_sample=True,
|
| 143 |
+
top_p=0.9,
|
| 144 |
+
top_k=40,
|
| 145 |
+
temperature=0.7,
|
| 146 |
+
no_repeat_ngram_size=3,
|
| 147 |
+
pad_token_id=local_tokenizer.pad_token_id,
|
| 148 |
+
eos_token_id=local_tokenizer.eos_token_id,
|
| 149 |
)
|
| 150 |
text = local_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 151 |
return text.split("sobre:")[-1].strip()
|
|
|
|
| 165 |
return [k.replace(" ", "+") for k, _ in kws if k] or ["naturaleza"]
|
| 166 |
|
| 167 |
def pexels_search(query: str, count: int) -> list[dict]:
|
| 168 |
+
res = requests.get(
|
| 169 |
+
"https://api.pexels.com/videos/search",
|
| 170 |
+
headers={"Authorization": PEXELS_API_KEY},
|
| 171 |
+
params={"query": query, "per_page": count, "orientation": "landscape"},
|
| 172 |
+
timeout=20
|
| 173 |
+
)
|
| 174 |
res.raise_for_status()
|
| 175 |
return res.json().get("videos", [])
|
| 176 |
|
|
|
|
| 181 |
with requests.get(url, stream=True, timeout=60) as r:
|
| 182 |
r.raise_for_status()
|
| 183 |
with open(path, "wb") as f:
|
| 184 |
+
for chunk in r.iter_content(1024 * 1024):
|
| 185 |
+
f.write(chunk)
|
| 186 |
return path if os.path.exists(path) and os.path.getsize(path) > 1000 else None
|
| 187 |
except Exception as e:
|
| 188 |
logger.error(f"Fallo al descargar {url}: {e}")
|
| 189 |
return None
|
| 190 |
|
| 191 |
def loop_audio(audio_clip: AudioFileClip, duration: float) -> AudioFileClip:
|
| 192 |
+
if audio_clip.duration >= duration:
|
| 193 |
+
return audio_clip.subclip(0, duration)
|
| 194 |
loops = math.ceil(duration / audio_clip.duration)
|
| 195 |
return concatenate_audioclips([audio_clip] * loops).subclip(0, duration)
|
| 196 |
|
| 197 |
def make_subtitle_clips(script: str, video_w: int, video_h: int, duration: float):
|
| 198 |
sentences = [s.strip() for s in re.split(r"[.!?¿¡]", script) if s.strip()]
|
| 199 |
+
if not sentences:
|
| 200 |
+
return []
|
| 201 |
total_words = sum(len(s.split()) for s in sentences) or 1
|
| 202 |
time_per_word = duration / total_words
|
| 203 |
clips, current_time = [], 0.0
|
| 204 |
for sentence in sentences:
|
| 205 |
num_words = len(sentence.split())
|
| 206 |
sentence_duration = num_words * time_per_word
|
| 207 |
+
if sentence_duration < 0.1:
|
| 208 |
+
continue
|
| 209 |
+
txt_clip = (
|
| 210 |
+
TextClip(
|
| 211 |
+
sentence,
|
| 212 |
+
fontsize=int(video_h * 0.05),
|
| 213 |
+
color="white",
|
| 214 |
+
stroke_color="black",
|
| 215 |
+
stroke_width=1.5,
|
| 216 |
+
method="caption",
|
| 217 |
+
size=(int(video_w * 0.9), None),
|
| 218 |
+
font="Arial-Bold"
|
| 219 |
+
)
|
| 220 |
+
.set_start(current_time)
|
| 221 |
+
.set_duration(sentence_duration)
|
| 222 |
+
.set_position(("center", "bottom"))
|
| 223 |
+
)
|
| 224 |
clips.append(txt_clip)
|
| 225 |
current_time += sentence_duration
|
| 226 |
return clips
|
|
|
|
| 237 |
try:
|
| 238 |
update_task_progress(task_id, "Paso 1/7: Generando guion...")
|
| 239 |
script = gpt2_script(script_text) if generate_script_flag else script_text.strip()
|
| 240 |
+
update_task_progress(task_id, "Paso 2/7: Creando audio con ToucanTTS...")
|
|
|
|
| 241 |
voice_path = os.path.join(tmp_dir, "voice.wav")
|
| 242 |
toucan_tts_synth(script, voice_path)
|
| 243 |
voice_clip = AudioFileClip(voice_path)
|
| 244 |
video_duration = voice_clip.duration
|
| 245 |
+
if video_duration < 1:
|
| 246 |
+
raise ValueError("El audio generado es demasiado corto.")
|
| 247 |
update_task_progress(task_id, "Paso 3/7: Buscando clips en Pexels...")
|
| 248 |
video_paths = []
|
| 249 |
kws = keywords(script)
|
| 250 |
for i, kw in enumerate(kws):
|
| 251 |
update_task_progress(task_id, f"Paso 3/7: Buscando... (keyword {i+1}/{len(kws)}: '{kw}')")
|
| 252 |
+
if len(video_paths) >= 8:
|
| 253 |
+
break
|
| 254 |
for video_data in pexels_search(kw, 2):
|
| 255 |
+
best_file = max(
|
| 256 |
+
video_data.get("video_files", []),
|
| 257 |
+
key=lambda f: f.get("width", 0)
|
| 258 |
+
)
|
| 259 |
if best_file:
|
| 260 |
path = download_file(best_file.get('link'), tmp_dir)
|
| 261 |
+
if path:
|
| 262 |
+
video_paths.append(path)
|
| 263 |
+
if len(video_paths) >= 8:
|
| 264 |
+
break
|
| 265 |
+
if not video_paths:
|
| 266 |
+
raise RuntimeError("No se encontraron vídeos en Pexels.")
|
| 267 |
update_task_progress(task_id, f"Paso 4/7: Ensamblando {len(video_paths)} clips...")
|
| 268 |
+
segments = [
|
| 269 |
+
VideoFileClip(p).subclip(0, min(8, VideoFileClip(p).duration))
|
| 270 |
+
for p in video_paths
|
| 271 |
+
]
|
| 272 |
base_video = concatenate_videoclips(segments, method="chain")
|
| 273 |
if base_video.duration < video_duration:
|
| 274 |
base_video = concatenate_videoclips([base_video] * math.ceil(video_duration / base_video.duration))
|
| 275 |
base_video = base_video.subclip(0, video_duration)
|
|
|
|
| 276 |
update_task_progress(task_id, "Paso 5/7: Componiendo audio final...")
|
| 277 |
if music_path:
|
| 278 |
music_clip = loop_audio(AudioFileClip(music_path), video_duration).volumex(0.20)
|
| 279 |
final_audio = CompositeAudioClip([music_clip, voice_clip])
|
| 280 |
+
else:
|
| 281 |
+
final_audio = voice_clip
|
| 282 |
update_task_progress(task_id, "Paso 6/7: Añadiendo subtítulos y efectos...")
|
| 283 |
subtitles = make_subtitle_clips(script, base_video.w, base_video.h, video_duration)
|
| 284 |
grain_effect = make_grain_clip(base_video.size, video_duration)
|
|
|
|
| 285 |
update_task_progress(task_id, "Paso 7/7: Renderizando vídeo final (esto puede tardar)...")
|
| 286 |
final_video = CompositeVideoClip([base_video, grain_effect, *subtitles]).set_audio(final_audio)
|
| 287 |
output_path = os.path.join(tmp_dir, "final_video.mp4")
|
| 288 |
+
final_video.write_videofile(
|
| 289 |
+
output_path,
|
| 290 |
+
fps=24,
|
| 291 |
+
codec="libx264",
|
| 292 |
+
audio_codec="aac",
|
| 293 |
+
threads=2,
|
| 294 |
+
logger=None
|
| 295 |
+
)
|
| 296 |
return output_path
|
| 297 |
finally:
|
| 298 |
+
if 'voice_clip' in locals():
|
| 299 |
+
voice_clip.close()
|
| 300 |
+
if 'music_clip' in locals():
|
| 301 |
+
music_clip.close()
|
| 302 |
+
if 'base_video' in locals():
|
| 303 |
+
base_video.close()
|
| 304 |
+
if 'final_video' in locals():
|
| 305 |
+
final_video.close()
|
| 306 |
if 'segments' in locals():
|
| 307 |
+
for seg in segments:
|
| 308 |
+
seg.close()
|
| 309 |
|
| 310 |
def worker(task_id: str, mode: str, topic: str, user_script: str, music: str | None):
|
| 311 |
+
# Carga del motor TTS aquí, para que ocurra dentro del hilo de trabajo y no bloquee el arranque global
|
| 312 |
global tts_interface
|
| 313 |
if tts_interface is None:
|
| 314 |
update_task_progress(task_id, "Cargando motor de voz ToucanTTS (primera vez, puede tardar)...")
|
|
|
|
| 321 |
# Para una solución real, el código de ToucanTTS tendría que estar en el path.
|
| 322 |
# get_tts_interface()
|
| 323 |
except Exception as e:
|
| 324 |
+
TASKS[task_id].update({"status": "error", "error": f"Fallo al cargar el motor TTS: {e}"})
|
| 325 |
+
return
|
|
|
|
| 326 |
try:
|
| 327 |
text = topic if mode == "Generar Guion con IA" else user_script
|
| 328 |
+
# Como ToucanTTS no está completamente integrado, simularemos un error por ahora.
|
| 329 |
+
# result_tmp_path = build_video(text, mode == "Generar Guion con IA", music, task_id)
|
| 330 |
+
# final_path = os.path.join(RESULTS_DIR, f"{task_id}.mp4")
|
| 331 |
+
# shutil.copy2(result_tmp_path, final_path)
|
| 332 |
+
# TASKS[task_id].update({"status": "done", "result": final_path})
|
| 333 |
+
# shutil.rmtree(os.path.dirname(result_tmp_path))
|
| 334 |
+
raise NotImplementedError("La integración del motor TTS autocontenido requiere refactorización que no se ha completado.")
|
| 335 |
except Exception as e:
|
| 336 |
logger.error(f"Error en el worker para la tarea {task_id}: {e}", exc_info=True)
|
| 337 |
TASKS[task_id].update({"status": "error", "error": str(e)})
|
| 338 |
|
|
|
|
| 339 |
def janitor_thread():
|
| 340 |
while True:
|
| 341 |
time.sleep(3600)
|
|
|
|
| 358 |
if not content.strip():
|
| 359 |
yield "Por favor, ingresa un tema o guion.", None, None
|
| 360 |
return
|
|
|
|
| 361 |
task_id = uuid.uuid4().hex[:8]
|
| 362 |
+
TASKS[task_id] = {
|
| 363 |
+
"status": "processing",
|
| 364 |
+
"progress_log": "Iniciando tarea...",
|
| 365 |
+
"timestamp": datetime.utcnow()
|
| 366 |
+
}
|
| 367 |
+
worker_thread = threading.Thread(
|
| 368 |
+
target=worker,
|
| 369 |
+
args=(task_id, mode, topic, user_script, music),
|
| 370 |
+
daemon=True
|
| 371 |
+
)
|
| 372 |
worker_thread.start()
|
|
|
|
| 373 |
while TASKS[task_id]["status"] == "processing":
|
| 374 |
yield TASKS[task_id]['progress_log'], None, None
|
| 375 |
time.sleep(1)
|
|
|
|
| 376 |
if TASKS[task_id]["status"] == "error":
|
| 377 |
yield f"❌ Error: {TASKS[task_id]['error']}", None, None
|
| 378 |
elif TASKS[task_id]["status"] == "done":
|
| 379 |
yield "✅ ¡Vídeo completado!", TASKS[task_id]['result'], TASKS[task_id]['result']
|
| 380 |
|
| 381 |
+
# Interfaz Gradio
|
| 382 |
with gr.Blocks(title="Generador de Vídeos IA", theme=gr.themes.Soft()) as demo:
|
| 383 |
gr.Markdown("# 🎬 Generador de Vídeos con IA")
|
| 384 |
gr.Markdown("Crea vídeos a partir de texto con voz, música y efectos visuales. El progreso se mostrará en tiempo real.")
|
|
|
|
| 385 |
with gr.Row():
|
| 386 |
with gr.Column(scale=2):
|
| 387 |
+
mode_radio = gr.Radio(
|
| 388 |
+
["Generar Guion con IA", "Usar Mi Guion"],
|
| 389 |
+
value="Generar Guion con IA",
|
| 390 |
+
label="Elige el método"
|
| 391 |
+
)
|
| 392 |
+
topic_textbox = gr.Textbox(
|
| 393 |
+
label="Tema para la IA",
|
| 394 |
+
placeholder="Ej: La exploración espacial y sus desafíos"
|
| 395 |
+
)
|
| 396 |
+
script_textbox = gr.Textbox(
|
| 397 |
+
label="Tu Guion Completo",
|
| 398 |
+
lines=5,
|
| 399 |
+
visible=False,
|
| 400 |
+
placeholder="Pega aquí tu guion..."
|
| 401 |
+
)
|
| 402 |
music_upload = gr.Audio(type="filepath", label="Música de fondo (opcional)")
|
| 403 |
submit_button = gr.Button("✨ Generar Vídeo", variant="primary")
|
|
|
|
| 404 |
with gr.Column(scale=2):
|
| 405 |
gr.Markdown("## Progreso y Resultados")
|
| 406 |
+
progress_log = gr.Textbox(
|
| 407 |
+
label="Log de Progreso en Tiempo Real",
|
| 408 |
+
lines=10,
|
| 409 |
+
interactive=False
|
| 410 |
+
)
|
| 411 |
video_output = gr.Video(label="Resultado del Vídeo")
|
| 412 |
download_file_output = gr.File(label="Descargar Fichero")
|
| 413 |
|
| 414 |
def toggle_textboxes(mode):
|
| 415 |
+
return (
|
| 416 |
+
gr.update(visible=mode == "Generar Guion con IA"),
|
| 417 |
+
gr.update(visible=mode != "Generar Guion con IA")
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
mode_radio.change(
|
| 421 |
+
toggle_textboxes,
|
| 422 |
+
inputs=mode_radio,
|
| 423 |
+
outputs=[topic_textbox, script_textbox]
|
| 424 |
+
)
|
| 425 |
|
|
|
|
|
|
|
| 426 |
submit_button.click(
|
| 427 |
fn=generate_and_monitor,
|
| 428 |
inputs=[mode_radio, topic_textbox, script_textbox, music_upload],
|
|
|
|
| 430 |
)
|
| 431 |
|
| 432 |
if __name__ == "__main__":
|
| 433 |
+
demo.launch()
|