File size: 30,782 Bytes
7f8c6a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
import os
import json
import time
import pickle
import random
import importlib
from pathlib import Path
from datetime import datetime
from typing import Dict, List, Tuple, Optional

import gradio as gr
import pandas as pd
import requests
import yaml


# ---------------- Config & Paths ----------------
ROOT = Path(__file__).parent
STATE_DIR = ROOT / "state"; STATE_DIR.mkdir(exist_ok=True, parents=True)
LOG_DIR = STATE_DIR
ELO_PATH = STATE_DIR / "elo.pkl"
LEADERBOARD_CSV = STATE_DIR / "leaderboard.csv"
VOTES_LOG = LOG_DIR / "votes.jsonl"
CACHE_PATH = STATE_DIR / "cache.pkl"  # (model, song) -> [items]
INTERACTIONS_LOG = STATE_DIR / "interactions.jsonl"

MODELS_YAML = ROOT / "models.yaml"
TRACKS_CSV = ROOT / "tracks.csv"
TOPK_SHOW = 10
K_FACTOR = 16
START_ELO = 1200.0
SEED = 343
random.seed(SEED)


# ---------------- Model loading ----------------
def load_models():
    if not MODELS_YAML.exists():
        raise RuntimeError(f"models.yaml not found at {MODELS_YAML}")
    cfg = yaml.safe_load(MODELS_YAML.read_text())
    models = cfg.get("models", [])
    if not models:
        raise RuntimeError("No models configured in models.yaml")
    names = [m["name"] for m in models]
    if len(names) != len(set(names)):
        raise RuntimeError("Duplicate model names in models.yaml")
    return {m["name"]: m for m in models}

MODELS = load_models()

# ---------------- Track Validation ----------------
def load_tracks():
    """Load track names and IDs from tracks.csv for validation and Spotify integration"""
    if not TRACKS_CSV.exists():
        print(f"Warning: {TRACKS_CSV} not found. Track validation disabled.")
        return set(), {}
    
    try:
        df = pd.read_csv(TRACKS_CSV)
        # Create track names in format "Track Name by Artist Name"
        track_names = []
        track_id_map = {}  # Maps formatted track names to Spotify track IDs
        
        for _, row in df.iterrows():
            track_name = row['track_name'].strip()
            artist_name = row['primary_artist_name'].strip()
            track_id = row['track_id'].strip()
            
            if track_name and artist_name and track_id:
                formatted_name = f"{track_name} by {artist_name}"
                track_names.append(formatted_name.lower())
                track_id_map[formatted_name.lower()] = track_id
        
        track_names_set = set(track_names)
        print(f"Loaded {len(track_names_set)} track names for validation")
        print(f"Sample track IDs: {list(track_id_map.items())[:3]}")  # Debug print
        return track_names_set, track_id_map
    except Exception as e:
        print(f"Error loading tracks.csv: {e}. Track validation disabled.")
        return set(), {}

def validate_track_name(track_name: str, valid_tracks: set) -> Tuple[bool, str]:
    """
    Check if a track name exists in the tracks database.
    
    Args:
        track_name: The track name to validate
        valid_tracks: Set of valid track names (lowercase)
    
    Returns:
        Tuple of (is_valid, message)
    """
    if not track_name or not track_name.strip():
        return False, "Empty track name"
    
    track_lower = track_name.lower().strip()
    
    # Direct match
    if track_lower in valid_tracks:
        return True, "Track found"
    
    # Fuzzy matching - check if any valid track contains this name
    matching_tracks = [t for t in valid_tracks if track_lower in t or t in track_lower]
    if matching_tracks:
        return True, f"Similar track found: {matching_tracks[0]}"
    
    return False, "Track not found in database"

# Load valid tracks and track ID mapping
VALID_TRACKS, TRACK_ID_MAP = load_tracks()

def get_spotify_track_id(track_name: str) -> Optional[str]:
    """
    Get Spotify track ID for a given track name.
    
    Args:
        track_name: Track name in format "Song by Artist"
    
    Returns:
        Spotify track ID or None if not found
    """
    if not track_name:
        return None
        
    track_lower = track_name.lower().strip()
    
    # Direct match first
    if track_lower in TRACK_ID_MAP:
        return TRACK_ID_MAP[track_lower]
    
    # Try to find partial matches
    for stored_track, track_id in TRACK_ID_MAP.items():
        if track_lower in stored_track or stored_track in track_lower:
            return track_id
    
    return None

def create_spotify_url(track_id: str) -> str:
    """
    Create Spotify URL for a track.
    
    Args:
        track_id: Spotify track ID
    
    Returns:
        Spotify URL
    """
    return f"https://open.spotify.com/track/{track_id}"

def create_spotify_player_html(track_id: str, width: str = "100%", height: str = "152") -> str:
    """
    Create HTML for Spotify web player embed.
    
    Args:
        track_id: Spotify track ID
        width: Player width (default: "100%")
        height: Player height (default: "152")
    
    Returns:
        HTML string for Spotify player
    """
    if not track_id:
        return "<p>No preview available</p>"
    
    url = f"https://open.spotify.com/embed/track/{track_id}?utm_source=generator"
    return f'''
    <iframe style="border-radius:12px" 
            src="{url}" 
            width="{width}" 
            height="{height}" 
            frameBorder="0" 
            allowfullscreen="" 
            allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture" 
            loading="lazy">
    </iframe>
    '''

def get_spotify_player(track_name: str) -> str:
    """
    Get Spotify web player for a track.
    
    Args:
        track_name: Track name to get player for
    
    Returns:
        Spotify player HTML or error message
    """
    if not track_name or not track_name.strip():
        return "<p>Please enter a track name first</p>"
    
    print(f"Looking for track: '{track_name}'")  # Debug print
    print(f"Available tracks sample: {list(VALID_TRACKS)[:5]}")  # Debug print
    
    track_id = get_spotify_track_id(track_name)
    print(f"Found track ID: {track_id}")  # Debug print
    
    if track_id:
        player_html = create_spotify_player_html(track_id)
        return f"<h3>🎵 Now Playing: {track_name}</h3>{player_html}"
    else:
        return f"<p>❌ No preview available for: {track_name}</p><p>Make sure the track exists in our database.</p><p>Available tracks: {', '.join(list(VALID_TRACKS)[:3])}</p>"

def check_track_in_database(track_name: str) -> str:
    """
    Check if a track name exists in the tracks database.
    This function can be called directly to validate track names.
    
    Args:
        track_name: The track name to check
    
    Returns:
        String message indicating validation result
    """
    is_valid, message = validate_track_name(track_name, VALID_TRACKS)
    return message

def find_matching_tracks(query: str, max_results: int = 5) -> List[str]:
    """
    Find tracks that match the given query string.
    
    Args:
        query: The search query
        max_results: Maximum number of results to return
    
    Returns:
        List of matching track names with artists
    """
    if not query or not query.strip():
        return []
    
    query_lower = query.lower().strip()
    matches = []
    
    # Direct matches first
    for track in VALID_TRACKS:
        if track == query_lower:
            matches.append(track.title())
            if len(matches) >= max_results:
                return matches
    
    # Partial matches
    for track in VALID_TRACKS:
        if query_lower in track and track not in matches:
            matches.append(track.title())
            if len(matches) >= max_results:
                return matches
    
    # Fuzzy matches (track contains query or query contains track)
    for track in VALID_TRACKS:
        if (track in query_lower or query_lower in track) and track not in matches:
            matches.append(track.title())
            if len(matches) >= max_results:
                return matches
    
    return matches[:max_results]

def get_random_track() -> str:
    """
    Get a random track from the database.
    
    Returns:
        Random track name with artist (title case)
    """
    if not VALID_TRACKS:
        return "No tracks available"
    
    random_track = random.choice(list(VALID_TRACKS))
    return random_track.title()

# ---------------- Cache ----------------
def load_cache() -> Dict[Tuple[str, str], List[str]]:
    if CACHE_PATH.exists():
        with CACHE_PATH.open("rb") as f:
            return pickle.load(f)
    return {}

def save_cache(cache: Dict[Tuple[str, str], List[str]]):
    with CACHE_PATH.open("wb") as f:
        pickle.dump(cache, f)

CACHE = load_cache()

# ---------------- Elo ----------------
def expected_score(ra: float, rb: float) -> float:
    return 1.0 / (1.0 + 10 ** ((rb - ra) / 400.0))

def update_elo(elo: Dict[str, float], a: str, b: str, outcome: str) -> None:
    ra = elo.get(a, START_ELO)
    rb = elo.get(b, START_ELO)
    ea = expected_score(ra, rb)
    eb = 1.0 - ea
    if outcome == "A":
        sa, sb = 1.0, 0.0
    elif outcome == "B":
        sa, sb = 0.0, 1.0
    else:
        sa, sb = 0.5, 0.5
    elo[a] = ra + K_FACTOR * (sa - ea)
    elo[b] = rb + K_FACTOR * (sb - eb)

def load_elo() -> Dict[str, float]:
    if ELO_PATH.exists():
        with ELO_PATH.open("rb") as f:
            elo = pickle.load(f)
    else:
        elo = {}
    # ensure every configured model has an Elo
    for m in MODELS.keys():
        elo.setdefault(m, START_ELO)
    return elo

def save_elo(elo: Dict[str, float]):
    with ELO_PATH.open("wb") as f:
        pickle.dump(elo, f)

def leaderboard_df(elo: Dict[str, float]) -> pd.DataFrame:
    df = pd.DataFrame({"model": list(elo.keys()), "elo": list(elo.values())})
    df = df.sort_values("elo", ascending=False)
    df.to_csv(LEADERBOARD_CSV, index=False)
    return df

# ---------------- Backends ----------------
def call_http(model_cfg: dict, song_ratings: List[Dict[str, any]]) -> List[str]:
    endpoint = model_cfg["endpoint"]
    timeout = float(model_cfg.get("timeout", 8))
    r = requests.post(
        endpoint,
        json={"song_ratings": song_ratings},
        timeout=timeout,
        headers={"Content-Type": "application/json"},
    )
    r.raise_for_status()
    obj = r.json()
    items = obj.get("items") or obj.get("recommendations") or []
    return [str(x) for x in items]

def call_python(model_cfg: dict, song_ratings: List[Dict[str, any]]) -> List[Tuple[str, str]]:
    import threading
    import time
    
    dotted = model_cfg["callable"]  # e.g., "team_alpha.src.recommender.query"
    timeout = float(model_cfg.get("timeout", 8))  # 8 seconds timeout for Python models
    
    mod_name, fn_name = dotted.rsplit(".", 1)
    mod = importlib.import_module(mod_name)
    query_fn = getattr(mod, fn_name)
    
    # Simple timeout mechanism using threading
    result = [None]
    exception = [None]
    
    def run_model():
        try:
            result[0] = query_fn(song_ratings)
        except Exception as e:
            exception[0] = e
    
    thread = threading.Thread(target=run_model)
    thread.daemon = True
    thread.start()
    thread.join(timeout=timeout)
    
    if thread.is_alive():
        raise TimeoutError(f"Python model '{model_cfg.get('name', 'unknown')}' timed out after {timeout} seconds")
    
    if exception[0]:
        raise exception[0]
    
    return result[0]

def get_recs(model_name: str, song_ratings: List[Dict[str, any]]) -> List[Tuple[str, str]]:
    """
    Get recommendations from a model.
    
    Args:
        model_name: Name of the model to use
        song_ratings: List of song ratings
    
    Returns:
        List of (spotify_id, track_name) tuples
    """
    cfg = MODELS[model_name]
    t = cfg["type"]

    if t == "http":
        items = call_http(cfg, song_ratings)
    elif t == "python":
        items = call_python(cfg, song_ratings)
    else:
        raise ValueError(f"Unknown model type: {t}")
    
    # Handle both old format (List[str]) and new format (List[Tuple[str, str]])
    if items and isinstance(items[0], (list, tuple)) and len(items[0]) == 2:
        # New format: List[Tuple[str, str]] - (spotify_id, track_name)
        result = items
    else:
        # Old format: List[str] - convert to new format with empty spotify_ids
        result = [("", str(i).strip()) for i in items if str(i).strip()]
    
    CACHE[model_name] = result
    # persist sparingly
    if len(CACHE) % 20 == 0:
        save_cache(CACHE)
    return result

# ---------------- Logging ----------------
def log_vote(payload: dict):
    with VOTES_LOG.open("a", encoding="utf-8") as f:
        f.write(json.dumps(payload, ensure_ascii=False) + "\n")

# ---------------- UI helpers ----------------
CSS = """
.card { border: 1px solid #e5e7eb; border-radius: 14px; padding: 12px; text-align: left; }
.card h3 { margin: 0 0 8px 0; font-size: 16px; }
.card .meta { color: #6b7280; font-size: 13px; margin-bottom: 8px; }
.items { font-family: ui-monospace, SFMono-Regular, Menlo, monospace; font-size: 14px; }
.items li { margin: 2px 0; }
#vote-row button { font-weight: 700; }
"""

def render_list(title: str, song: str, items: List[Tuple[str, str]], k: int = TOPK_SHOW) -> str:
    """
    Render a list of recommendations with Spotify players.
    
    Args:
        title: Title for the recommendation list
        song: Song name for context
        items: List of (spotify_id, track_name) tuples
        k: Number of items to show
    
    Returns:
        HTML string with recommendations and embedded Spotify players
    """
    if not items:
        return f'<div class="card"><h3>{title}</h3><div class="meta">Song: <b>{song}</b></div><em>No items returned.</em></div>'
    
    top = items[:k]
    
    # Create list items with Spotify players
    li_items = []
    spotify_players = []
    
    for i, (spotify_id, track_name) in enumerate(top):
        li_items.append(f"<li>{track_name}</li>")
        
        if spotify_id:
            player_html = create_spotify_player_html(spotify_id, width="100%", height="80")
            spotify_players.append(f"""
            <div style="margin: 10px 0; padding: 10px; border: 1px solid #e5e7eb; border-radius: 8px;">
                <h4 style="margin: 0 0 5px 0; font-size: 14px;">{i+1}. {track_name}</h4>
                {player_html}
            </div>
            """)
        else:
            spotify_players.append(f"""
            <div style="margin: 10px 0; padding: 10px; border: 1px solid #e5e7eb; border-radius: 8px;">
                <h4 style="margin: 0 0 5px 0; font-size: 14px;">{i+1}. {track_name}</h4>
                <p style="color: #6b7280; font-size: 12px;">No preview available</p>
            </div>
            """)
    
    li = "".join(li_items)
    players_html = "".join(spotify_players)
    
    return f"""
    <div class="card">
      <h3>{title}</h3>
      <div class="meta">Song: <b>{song}</b> · Showing top {len(top)}</div>
      <ol class="items">{li}</ol>
      <div style="margin-top: 15px;">
        <h4>🎵 Preview Tracks:</h4>
        {players_html}
      </div>
    </div>
    """

# ---------------- Gradio App ----------------
with gr.Blocks(title="Recommender Arena (Song Ratings → A/B Vote)", css=CSS) as demo:
    gr.Markdown("# 🎶 Tune Duel")
    gr.Markdown("Rate **your favourite songs** (1-5 stars). Pick two models (or random). Compare the recommendations and vote.")
    gr.Markdown("💡 **Tips**: Start typing a song name to see matching tracks, click 🎲 Random to get a random track, or click ▶️ Play to start the Spotify player!")

    # Spotify player display at the top
    with gr.Row():
        spotify_player_display = gr.HTML(label="🎵 Now Playing", 
                                       value="<p>Enter a track name and click ▶️ to start playing!</p>")
    
    # Test button to show sample tracks
    with gr.Row():
        test_btn = gr.Button("🔍 Show Sample Tracks", variant="secondary")
    
    def show_sample_tracks():
        """Show sample tracks for testing"""
        sample_tracks = list(VALID_TRACKS)[:5]
        return f"<h3>Sample tracks in database:</h3><ul>" + "".join(f"<li>{track}</li>" for track in sample_tracks) + "</ul>"
    
    test_btn.click(show_sample_tracks, outputs=[spotify_player_display])

    model_names = sorted(MODELS.keys())

    # Song ratings input - using a more flexible approach
    with gr.Row():
        with gr.Column(scale=14):  # main content area
            with gr.Row():
                song1 = gr.Textbox(label="Song 1", placeholder="e.g., '22 by Taylor Swift'", lines=1, scale=8)
                rating1 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 1", scale=2)
                song1_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
        with gr.Column(scale=1, elem_classes="button-col"):
            song1_random_btn = gr.Button("🎲", variant="secondary", elem_classes="small-btn")
            song1_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
        
    with gr.Row():
        with gr.Column(scale=14):
            with gr.Row():
                song2 = gr.Textbox(label="Song 2", placeholder="e.g., 'Paranoid Android by Radiohead'", lines=1,  scale=8)
                rating2 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 2", scale=2)
                song2_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
        with gr.Column(scale=1, elem_classes="button-col"):
            song2_random_btn = gr.Button("🎲", variant="secondary", elem_classes="small-btn")
            song2_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
    
    with gr.Row():
        with gr.Column(scale=14):   
            with gr.Row():
                song3 = gr.Textbox(label="Song 3", placeholder="e.g., 'Hey Jude by The Beatles'", lines=1, scale=8)
                rating3 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 3", scale=2)
                song3_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
        with gr.Column(scale=1, elem_classes="button-col"):
            song3_random_btn = gr.Button("🎲", variant="secondary", elem_classes="small-btn")
            song3_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
    
    # Additional songs container (initially hidden)
    additional_songs_container = gr.Column(visible=False)
    
    with additional_songs_container:
        with gr.Row():
            with gr.Column(scale=14):   
                with gr.Row():        
                    song4 = gr.Textbox(label="Song 4", placeholder="e.g., 'Bohemian Rhapsody by Queen'", lines=1, scale=8)
                    rating4 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 4", scale=2)
                    song4_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
            with gr.Column(scale=1, elem_classes="button-col"):
                song4_random_btn = gr.Button("🎲", variant="secondary", elem_classes="small-btn")
                song4_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
        
        with gr.Row():
            with gr.Column(scale=14):
                with gr.Row():
                    song5 = gr.Textbox(label="Song 5", placeholder="e.g., 'Stairway to Heaven by Led Zeppelin'", lines=1, scale=8)
                    rating5 = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Rating 5", scale=2)
                    song5_suggestions = gr.Dropdown(label="Suggestions", choices=[], interactive=True, visible=False, scale=3)
            with gr.Column(scale=1, elem_classes="button-col"):
                song5_random_btn = gr.Button("🎲", variant="secondary",elem_classes="small-btn")
                song5_play_btn = gr.Button("▶️", variant="primary", elem_classes="small-btn")
    
    # Add more songs button
    add_song_btn = gr.Button("Add More Songs (4-5)", variant="secondary")
    
    # Fill all random button
    fill_all_random_btn = gr.Button("🎲 Fill All Random", variant="primary")
    
    def toggle_additional_songs():
        return gr.Column(visible=True)
    
    def fill_all_random():
        """Fill all song fields with random tracks"""
        return [get_random_track() for _ in range(5)]
    
    add_song_btn.click(toggle_additional_songs, outputs=[additional_songs_container])
    fill_all_random_btn.click(fill_all_random, outputs=[song1, song2, song3, song4, song5])
    
    # Real-time track suggestions functions
    def update_suggestions(query: str, suggestions_dropdown):
        """Update suggestions dropdown based on query"""
        if not query or len(query.strip()) < 2:
            return gr.Dropdown(choices=[], visible=False)
        
        matches = find_matching_tracks(query, max_results=8)
        if matches:
            return gr.Dropdown(choices=matches, visible=True)
        else:
            return gr.Dropdown(choices=[], visible=False)
    
    def select_suggestion(suggestion: str, textbox):
        """When user selects a suggestion, update the textbox"""
        if suggestion:
            return suggestion
        return textbox
    
    # Set up real-time suggestions for all song inputs
    song1.change(update_suggestions, inputs=[song1, song1_suggestions], outputs=[song1_suggestions])
    song1_suggestions.change(select_suggestion, inputs=[song1_suggestions, song1], outputs=[song1])
    
    song2.change(update_suggestions, inputs=[song2, song2_suggestions], outputs=[song2_suggestions])
    song2_suggestions.change(select_suggestion, inputs=[song2_suggestions, song2], outputs=[song2])
    
    song3.change(update_suggestions, inputs=[song3, song3_suggestions], outputs=[song3_suggestions])
    song3_suggestions.change(select_suggestion, inputs=[song3_suggestions, song3], outputs=[song3])
    
    song4.change(update_suggestions, inputs=[song4, song4_suggestions], outputs=[song4_suggestions])
    song4_suggestions.change(select_suggestion, inputs=[song4_suggestions, song4], outputs=[song4])
    
    song5.change(update_suggestions, inputs=[song5, song5_suggestions], outputs=[song5_suggestions])
    song5_suggestions.change(select_suggestion, inputs=[song5_suggestions, song5], outputs=[song5])
    
    # Random track button handlers
    song1_random_btn.click(lambda: get_random_track(), outputs=[song1])
    song2_random_btn.click(lambda: get_random_track(), outputs=[song2])
    song3_random_btn.click(lambda: get_random_track(), outputs=[song3])
    song4_random_btn.click(lambda: get_random_track(), outputs=[song4])
    song5_random_btn.click(lambda: get_random_track(), outputs=[song5])
    
    # Play button handlers - start Spotify player
    song1_play_btn.click(get_spotify_player, inputs=[song1], outputs=[spotify_player_display])
    song2_play_btn.click(get_spotify_player, inputs=[song2], outputs=[spotify_player_display])
    song3_play_btn.click(get_spotify_player, inputs=[song3], outputs=[spotify_player_display])
    song4_play_btn.click(get_spotify_player, inputs=[song4], outputs=[spotify_player_display])
    song5_play_btn.click(get_spotify_player, inputs=[song5], outputs=[spotify_player_display])
    
    with gr.Row():
        model_a = gr.Dropdown(choices=model_names, value=random.choice(model_names), label="Model A")
        model_b = gr.Dropdown(choices=model_names, value=random.choice(model_names), label="Model B")
        rand_pair_btn = gr.Button("Random Pair")
        recommend_btn = gr.Button("Recommend")   # <-- NEW


    with gr.Row():
        list_a = gr.HTML()
        list_b = gr.HTML()

    with gr.Row(elem_id="vote-row"):
        btn_a = gr.Button("A Wins", variant="primary")
        btn_tie = gr.Button("Tie", variant="secondary")
        btn_b = gr.Button("B Wins", variant="primary")
        btn_skip = gr.Button("Skip", variant="secondary")

    leaderboard = gr.Dataframe(headers=["model", "elo"], interactive=False, label="Live Leaderboard (Elo)") #, height=400)

    # states
    elo_state = gr.State(load_elo())
    last_payload = gr.State({})  # remember last (song, A, B) for logging

    def random_pair(cur_a, cur_b):
        # ensure distinct
        if len(model_names) < 2:
            return gr.Warning("Need at least two models.")
        a, b = random.sample(model_names, 2)
        return a, b

    rand_pair_btn.click(random_pair, inputs=[model_a, model_b], outputs=[model_a, model_b])

    def render_empty(title: str, msg: str) -> str:
        return f"""
        <div class="card">
        <h3>{title}</h3>
        <div class="meta"></div>
        <em>{msg}</em>
        </div>
        """

    def refresh_lists(song1, rating1, song2, rating2, song3, rating3, song4, rating4, song5, rating5, a: str, b: str, elo: dict, prev_payload: dict):
        # Parse songs and ratings from the input
        song_ratings = []
        songs_and_ratings = [(song1, rating1), (song2, rating2), (song3, rating3), (song4, rating4), (song5, rating5)]
        # Validate tracks and collect validation messages
        validation_messages = []
        for song, rating in songs_and_ratings:
            if song and song.strip():
                is_valid, message = validate_track_name(song, VALID_TRACKS)
                if not is_valid:
                    validation_messages.append(f"'{song}': {message}")
                else:
                    spotify_id = get_spotify_track_id(song.strip())
                    song_ratings.append({
                        "song": song.strip(), 
                        "rating": int(rating),
                        "spotify_id": spotify_id or ""
                    })
        
        # If no valid songs, warn and keep previous state/UI
        if not song_ratings:
            gr.Warning("Please enter at least one song with a rating.")
            df = leaderboard_df(elo)
            if prev_payload:
                # keep the previous lists as-is
                pa = render_list(prev_payload["A"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["A"], prev_payload["song_ratings"]))
                pb = render_list(prev_payload["B"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["B"], prev_payload["song_ratings"]))
                return pa, pb, prev_payload, df
            # or show helpful placeholders
            empty_a = render_empty("Model A", "Enter songs with ratings and click Recommend.")
            empty_b = render_empty("Model B", "Enter songs with ratings and click Recommend.")
            return empty_a, empty_b, prev_payload, df

        if a == b:
            gr.Warning("Pick two different models.")
            df = leaderboard_df(elo)
            if prev_payload:
                pa = render_list(prev_payload["A"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["A"], prev_payload["song_ratings"]))
                pb = render_list(prev_payload["B"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["B"], prev_payload["song_ratings"]))
                return pa, pb, prev_payload, df
            empty_a = render_empty("Model A", "Pick two different models.")
            empty_b = render_empty("Model B", "Pick two different models.")
            return empty_a, empty_b, prev_payload, df

        # Valid -> fetch and render
        try:

            items_a = get_recs(a, song_ratings)
            items_b = get_recs(b, song_ratings)
        except Exception as e:
            gr.Warning(f"Failed to get recommendations: {e}")
            df = leaderboard_df(elo)
            if prev_payload:
                pa = render_list(prev_payload["A"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["A"], prev_payload["song_ratings"]))
                pb = render_list(prev_payload["B"], f"{len(prev_payload['song_ratings'])} songs", get_recs(prev_payload["B"], prev_payload["song_ratings"]))
                return pa, pb, prev_payload, df
            return render_empty("Model A", "Error fetching."), render_empty("Model B", "Error fetching."), prev_payload, df

        html_a = render_list(a, f"{len(song_ratings)} songs", items_a)
        html_b = render_list(b, f"{len(song_ratings)} songs", items_b)
        df = leaderboard_df(elo)
        payload = {"song_ratings": song_ratings, "A": a, "B": b}
        return html_a, html_b, payload, df

    # Fetch lists whenever inputs change meaningfully
    rand_pair_btn.click(
        random_pair, inputs=[model_a, model_b], outputs=[model_a, model_b]
    )

    recommend_btn.click(
        refresh_lists,
        inputs=[song1, rating1, song2, rating2, song3, rating3, song4, rating4, song5, rating5, model_a, model_b, elo_state, last_payload],
        outputs=[list_a, list_b, last_payload, leaderboard],
    )
    model_a.change(refresh_lists, inputs=[song1, rating1, song2, rating2, song3, rating3, song4, rating4, song5, rating5, model_a, model_b, elo_state], outputs=[list_a, list_b, last_payload, leaderboard])
    model_b.change(refresh_lists, inputs=[song1, rating1, song2, rating2, song3, rating3, song4, rating4, song5, rating5, model_a, model_b, elo_state], outputs=[list_a, list_b, last_payload, leaderboard])

    def vote(action: str, elo: dict, payload: dict, request: gr.Request):
        if not payload:
            raise gr.Error("Load recommendations first (enter songs with ratings).")
        song_ratings = payload["song_ratings"]; a = payload["A"]; b = payload["B"]
        outcome = "Tie" if action == "tie" else ("A" if action == "a" else "B")
        # update elo
        update_elo(elo, a, b, outcome)
        save_elo(elo)
        df = leaderboard_df(elo)
        # log
        log_vote({
            "ts": datetime.utcnow().isoformat(),
            "client_ip": getattr(request, "client", None).host if request and request.client else None,
            "song_ratings": song_ratings, "model_a": a, "model_b": b, "outcome": outcome,
        })
        return elo, df

    btn_a.click(vote, inputs=[gr.State("a"), elo_state, last_payload], outputs=[elo_state, leaderboard])
    btn_b.click(vote, inputs=[gr.State("b"), elo_state, last_payload], outputs=[elo_state, leaderboard])
    btn_tie.click(vote, inputs=[gr.State("tie"), elo_state, last_payload], outputs=[elo_state, leaderboard])
    btn_skip.click(lambda elo: (elo, leaderboard_df(elo)), inputs=[elo_state], outputs=[elo_state, leaderboard])

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=20).launch(server_name="0.0.0.0", server_port=7860, share=True)