Spaces:
Sleeping
Sleeping
Gourisankar Padihary
commited on
Commit
·
2889c96
1
Parent(s):
5661370
Capability to modify the llm through UI
Browse files- app.py +48 -2
- config.py +1 -1
- generator/initialize_llm.py +10 -6
- main.py +3 -3
- retriever/retrieve_documents.py +1 -1
app.py
CHANGED
|
@@ -4,7 +4,8 @@ import threading
|
|
| 4 |
import time
|
| 5 |
from generator.compute_metrics import get_attributes_text
|
| 6 |
from generator.generate_metrics import generate_metrics, retrieve_and_generate_response
|
| 7 |
-
from config import AppConfig, ConfigConstants
|
|
|
|
| 8 |
|
| 9 |
def launch_gradio(config : AppConfig):
|
| 10 |
"""
|
|
@@ -80,17 +81,50 @@ def launch_gradio(config : AppConfig):
|
|
| 80 |
logging.error(f"Error computing metrics: {e}")
|
| 81 |
return f"An error occurred: {e}", ""
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
# Define Gradio Blocks layout
|
| 84 |
with gr.Blocks() as interface:
|
| 85 |
interface.title = "Real Time RAG Pipeline Q&A"
|
| 86 |
gr.Markdown("### Real Time RAG Pipeline Q&A") # Heading
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
# Section to display LLM names
|
| 89 |
with gr.Row():
|
| 90 |
model_info = f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 91 |
model_info += f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
| 92 |
model_info += f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
| 93 |
-
gr.Textbox(value=model_info, label="Model Information", interactive=False) # Read-only textbox
|
| 94 |
|
| 95 |
# State to store response and source documents
|
| 96 |
state = gr.State(value={"query": "","response": "", "source_docs": {}})
|
|
@@ -122,7 +156,19 @@ def launch_gradio(config : AppConfig):
|
|
| 122 |
inputs=[state],
|
| 123 |
outputs=[attr_output, metrics_output]
|
| 124 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
# Section to display logs
|
| 127 |
with gr.Row():
|
| 128 |
start_log_button = gr.Button("Start Log Update", elem_id="start_btn") # Button to start log updates
|
|
|
|
| 4 |
import time
|
| 5 |
from generator.compute_metrics import get_attributes_text
|
| 6 |
from generator.generate_metrics import generate_metrics, retrieve_and_generate_response
|
| 7 |
+
from config import AppConfig, ConfigConstants
|
| 8 |
+
from generator.initialize_llm import initialize_generation_llm, initialize_validation_llm
|
| 9 |
|
| 10 |
def launch_gradio(config : AppConfig):
|
| 11 |
"""
|
|
|
|
| 81 |
logging.error(f"Error computing metrics: {e}")
|
| 82 |
return f"An error occurred: {e}", ""
|
| 83 |
|
| 84 |
+
def reinitialize_gen_llm(gen_llm_name):
|
| 85 |
+
"""Reinitialize the generation LLM and return updated model info."""
|
| 86 |
+
if gen_llm_name.strip(): # Only update if input is not empty
|
| 87 |
+
config.gen_llm = initialize_generation_llm(gen_llm_name)
|
| 88 |
+
|
| 89 |
+
# Return updated model information
|
| 90 |
+
updated_model_info = (
|
| 91 |
+
f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 92 |
+
f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
| 93 |
+
f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
| 94 |
+
)
|
| 95 |
+
return updated_model_info
|
| 96 |
+
|
| 97 |
+
def reinitialize_val_llm(val_llm_name):
|
| 98 |
+
"""Reinitialize the generation LLM and return updated model info."""
|
| 99 |
+
if val_llm_name.strip(): # Only update if input is not empty
|
| 100 |
+
config.val_llm = initialize_validation_llm(val_llm_name)
|
| 101 |
+
|
| 102 |
+
# Return updated model information
|
| 103 |
+
updated_model_info = (
|
| 104 |
+
f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 105 |
+
f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
| 106 |
+
f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
| 107 |
+
)
|
| 108 |
+
return updated_model_info
|
| 109 |
+
|
| 110 |
# Define Gradio Blocks layout
|
| 111 |
with gr.Blocks() as interface:
|
| 112 |
interface.title = "Real Time RAG Pipeline Q&A"
|
| 113 |
gr.Markdown("### Real Time RAG Pipeline Q&A") # Heading
|
| 114 |
|
| 115 |
+
# Textbox for new generation LLM name
|
| 116 |
+
with gr.Row():
|
| 117 |
+
new_gen_llm_input = gr.Textbox(label="New Generation LLM Name", placeholder="Enter LLM name to update")
|
| 118 |
+
update_gen_llm_button = gr.Button("Update Generation LLM")
|
| 119 |
+
new_val_llm_input = gr.Textbox(label="New Validation LLM Name", placeholder="Enter LLM name to update")
|
| 120 |
+
update_val_llm_button = gr.Button("Update Validation LLM")
|
| 121 |
+
|
| 122 |
# Section to display LLM names
|
| 123 |
with gr.Row():
|
| 124 |
model_info = f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 125 |
model_info += f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
| 126 |
model_info += f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
| 127 |
+
model_info_display = gr.Textbox(value=model_info, label="Model Information", interactive=False) # Read-only textbox
|
| 128 |
|
| 129 |
# State to store response and source documents
|
| 130 |
state = gr.State(value={"query": "","response": "", "source_docs": {}})
|
|
|
|
| 156 |
inputs=[state],
|
| 157 |
outputs=[attr_output, metrics_output]
|
| 158 |
)
|
| 159 |
+
|
| 160 |
+
update_gen_llm_button.click(
|
| 161 |
+
fn=reinitialize_gen_llm,
|
| 162 |
+
inputs=[new_gen_llm_input],
|
| 163 |
+
outputs=[model_info_display] # Update the displayed model info
|
| 164 |
+
)
|
| 165 |
|
| 166 |
+
update_val_llm_button.click(
|
| 167 |
+
fn=reinitialize_val_llm,
|
| 168 |
+
inputs=[new_val_llm_input],
|
| 169 |
+
outputs=[model_info_display] # Update the displayed model info
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
# Section to display logs
|
| 173 |
with gr.Row():
|
| 174 |
start_log_button = gr.Button("Start Log Update", elem_id="start_btn") # Button to start log updates
|
config.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
|
| 2 |
class ConfigConstants:
|
| 3 |
# Constants related to datasets and models
|
| 4 |
-
DATA_SET_NAMES = ['covidqa', 'cuad'
|
| 5 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L3-v2"
|
| 6 |
RE_RANKER_MODEL_NAME = 'cross-encoder/ms-marco-electra-base'
|
| 7 |
GENERATION_MODEL_NAME = 'mixtral-8x7b-32768'
|
|
|
|
| 1 |
|
| 2 |
class ConfigConstants:
|
| 3 |
# Constants related to datasets and models
|
| 4 |
+
DATA_SET_NAMES = ['covidqa', 'cuad']#, 'delucionqa', 'emanual', 'expertqa', 'finqa', 'hagrid', 'hotpotqa', 'msmarco', 'pubmedqa', 'tatqa', 'techqa']
|
| 5 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L3-v2"
|
| 6 |
RE_RANKER_MODEL_NAME = 'cross-encoder/ms-marco-electra-base'
|
| 7 |
GENERATION_MODEL_NAME = 'mixtral-8x7b-32768'
|
generator/initialize_llm.py
CHANGED
|
@@ -2,18 +2,22 @@ import logging
|
|
| 2 |
import os
|
| 3 |
from langchain_groq import ChatGroq
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def initialize_generation_llm():
|
| 8 |
os.environ["GROQ_API_KEY"] = ""
|
| 9 |
-
|
|
|
|
| 10 |
llm = ChatGroq(model=model_name, temperature=0.7)
|
|
|
|
| 11 |
logging.info(f'Generation LLM {model_name} initialized')
|
|
|
|
| 12 |
return llm
|
| 13 |
|
| 14 |
-
def initialize_validation_llm():
|
| 15 |
os.environ["GROQ_API_KEY"] = ""
|
| 16 |
-
|
|
|
|
| 17 |
llm = ChatGroq(model=model_name, temperature=0.7)
|
|
|
|
| 18 |
logging.info(f'Validation LLM {model_name} initialized')
|
|
|
|
| 19 |
return llm
|
|
|
|
| 2 |
import os
|
| 3 |
from langchain_groq import ChatGroq
|
| 4 |
|
| 5 |
+
def initialize_generation_llm(input_model_name):
|
|
|
|
|
|
|
| 6 |
os.environ["GROQ_API_KEY"] = ""
|
| 7 |
+
|
| 8 |
+
model_name = input_model_name
|
| 9 |
llm = ChatGroq(model=model_name, temperature=0.7)
|
| 10 |
+
llm.name = model_name
|
| 11 |
logging.info(f'Generation LLM {model_name} initialized')
|
| 12 |
+
|
| 13 |
return llm
|
| 14 |
|
| 15 |
+
def initialize_validation_llm(input_model_name):
|
| 16 |
os.environ["GROQ_API_KEY"] = ""
|
| 17 |
+
|
| 18 |
+
model_name = input_model_name
|
| 19 |
llm = ChatGroq(model=model_name, temperature=0.7)
|
| 20 |
+
llm.name = model_name
|
| 21 |
logging.info(f'Validation LLM {model_name} initialized')
|
| 22 |
+
|
| 23 |
return llm
|
main.py
CHANGED
|
@@ -44,10 +44,10 @@ def main():
|
|
| 44 |
logging.info("Documents embedded")
|
| 45 |
|
| 46 |
# Initialize the Generation LLM
|
| 47 |
-
gen_llm = initialize_generation_llm()
|
| 48 |
|
| 49 |
# Initialize the Validation LLM
|
| 50 |
-
val_llm = initialize_validation_llm()
|
| 51 |
|
| 52 |
#Compute RMSE and AUC-ROC for entire dataset
|
| 53 |
#Enable below code for calculation
|
|
@@ -55,7 +55,7 @@ def main():
|
|
| 55 |
#compute_rmse_auc_roc_metrics(gen_llm, val_llm, datasets[data_set_name], vector_store, 10)
|
| 56 |
|
| 57 |
# Launch the Gradio app
|
| 58 |
-
config = AppConfig(vector_store= vector_store, gen_llm= gen_llm, val_llm= val_llm)
|
| 59 |
launch_gradio(config)
|
| 60 |
|
| 61 |
logging.info("Finished!!!")
|
|
|
|
| 44 |
logging.info("Documents embedded")
|
| 45 |
|
| 46 |
# Initialize the Generation LLM
|
| 47 |
+
gen_llm = initialize_generation_llm(ConfigConstants.GENERATION_MODEL_NAME)
|
| 48 |
|
| 49 |
# Initialize the Validation LLM
|
| 50 |
+
val_llm = initialize_validation_llm(ConfigConstants.VALIDATION_MODEL_NAME)
|
| 51 |
|
| 52 |
#Compute RMSE and AUC-ROC for entire dataset
|
| 53 |
#Enable below code for calculation
|
|
|
|
| 55 |
#compute_rmse_auc_roc_metrics(gen_llm, val_llm, datasets[data_set_name], vector_store, 10)
|
| 56 |
|
| 57 |
# Launch the Gradio app
|
| 58 |
+
config = AppConfig(vector_store= vector_store, gen_llm = gen_llm, val_llm = val_llm)
|
| 59 |
launch_gradio(config)
|
| 60 |
|
| 61 |
logging.info("Finished!!!")
|
retriever/retrieve_documents.py
CHANGED
|
@@ -8,7 +8,7 @@ def retrieve_top_k_documents(vector_store, query, top_k=5):
|
|
| 8 |
documents = vector_store.similarity_search(query, k=top_k)
|
| 9 |
logging.info(f"Top {top_k} documents reterived for query")
|
| 10 |
|
| 11 |
-
documents = rerank_documents(query, documents)
|
| 12 |
|
| 13 |
return documents
|
| 14 |
|
|
|
|
| 8 |
documents = vector_store.similarity_search(query, k=top_k)
|
| 9 |
logging.info(f"Top {top_k} documents reterived for query")
|
| 10 |
|
| 11 |
+
#documents = rerank_documents(query, documents)
|
| 12 |
|
| 13 |
return documents
|
| 14 |
|