Spaces:
Sleeping
Sleeping
Gourisankar Padihary
commited on
Commit
·
5485d7c
1
Parent(s):
5184c29
Further update
Browse files- app.py +7 -6
- config.py +14 -0
- main.py +10 -16
- retriever/embed_documents.py +4 -2
- retriever/retrieve_documents.py +12 -4
app.py
CHANGED
|
@@ -4,9 +4,9 @@ import threading
|
|
| 4 |
import time
|
| 5 |
from generator.compute_metrics import get_attributes_text
|
| 6 |
from generator.generate_metrics import generate_metrics, retrieve_and_generate_response
|
| 7 |
-
from
|
| 8 |
|
| 9 |
-
def launch_gradio(
|
| 10 |
"""
|
| 11 |
Launch the Gradio app with pre-initialized objects.
|
| 12 |
"""
|
|
@@ -43,7 +43,7 @@ def launch_gradio(vector_store, gen_llm, val_llm):
|
|
| 43 |
def answer_question(query, state):
|
| 44 |
try:
|
| 45 |
# Generate response using the passed objects
|
| 46 |
-
response, source_docs = retrieve_and_generate_response(gen_llm, vector_store, query)
|
| 47 |
|
| 48 |
# Update state with the response and source documents
|
| 49 |
state["query"] = query
|
|
@@ -66,7 +66,7 @@ def launch_gradio(vector_store, gen_llm, val_llm):
|
|
| 66 |
query = state.get("query", "")
|
| 67 |
|
| 68 |
# Generate metrics using the passed objects
|
| 69 |
-
attributes, metrics = generate_metrics(val_llm, response, source_docs, query, 1)
|
| 70 |
|
| 71 |
attributes_text = get_attributes_text(attributes)
|
| 72 |
|
|
@@ -87,8 +87,9 @@ def launch_gradio(vector_store, gen_llm, val_llm):
|
|
| 87 |
|
| 88 |
# Section to display LLM names
|
| 89 |
with gr.Row():
|
| 90 |
-
model_info = f"
|
| 91 |
-
model_info += f"
|
|
|
|
| 92 |
gr.Textbox(value=model_info, label="Model Information", interactive=False) # Read-only textbox
|
| 93 |
|
| 94 |
# State to store response and source documents
|
|
|
|
| 4 |
import time
|
| 5 |
from generator.compute_metrics import get_attributes_text
|
| 6 |
from generator.generate_metrics import generate_metrics, retrieve_and_generate_response
|
| 7 |
+
from config import AppConfig, ConfigConstants
|
| 8 |
|
| 9 |
+
def launch_gradio(config : AppConfig):
|
| 10 |
"""
|
| 11 |
Launch the Gradio app with pre-initialized objects.
|
| 12 |
"""
|
|
|
|
| 43 |
def answer_question(query, state):
|
| 44 |
try:
|
| 45 |
# Generate response using the passed objects
|
| 46 |
+
response, source_docs = retrieve_and_generate_response(config.gen_llm, config.vector_store, query)
|
| 47 |
|
| 48 |
# Update state with the response and source documents
|
| 49 |
state["query"] = query
|
|
|
|
| 66 |
query = state.get("query", "")
|
| 67 |
|
| 68 |
# Generate metrics using the passed objects
|
| 69 |
+
attributes, metrics = generate_metrics(config.val_llm, response, source_docs, query, 1)
|
| 70 |
|
| 71 |
attributes_text = get_attributes_text(attributes)
|
| 72 |
|
|
|
|
| 87 |
|
| 88 |
# Section to display LLM names
|
| 89 |
with gr.Row():
|
| 90 |
+
model_info = f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 91 |
+
model_info += f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
| 92 |
+
model_info += f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
| 93 |
gr.Textbox(value=model_info, label="Model Information", interactive=False) # Read-only textbox
|
| 94 |
|
| 95 |
# State to store response and source documents
|
config.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
class ConfigConstants:
|
| 3 |
+
# Constants related to datasets and models
|
| 4 |
+
DATA_SET_NAMES = ['covidqa', 'techqa', 'cuad']
|
| 5 |
+
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L3-v2"
|
| 6 |
+
RE_RANKER_MODEL_NAME = 'cross-encoder/ms-marco-electra-base'
|
| 7 |
+
DEFAULT_CHUNK_SIZE = 1000
|
| 8 |
+
CHUNK_OVERLAP = 200
|
| 9 |
+
|
| 10 |
+
class AppConfig:
|
| 11 |
+
def __init__(self, vector_store, gen_llm, val_llm):
|
| 12 |
+
self.vector_store = vector_store
|
| 13 |
+
self.gen_llm = gen_llm
|
| 14 |
+
self.val_llm = val_llm
|
main.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import logging
|
|
|
|
| 2 |
from data.load_dataset import load_data
|
| 3 |
from generator.compute_rmse_auc_roc_metrics import compute_rmse_auc_roc_metrics
|
| 4 |
from retriever.chunk_documents import chunk_documents
|
|
@@ -12,32 +13,23 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
| 12 |
|
| 13 |
def main():
|
| 14 |
logging.info("Starting the RAG pipeline")
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# Load single dataset
|
| 18 |
-
#dataset = load_data(data_set_name)
|
| 19 |
-
#logging.info("Dataset loaded")
|
| 20 |
-
# List of datasets to load
|
| 21 |
-
data_set_names = ['covidqa', 'techqa', 'cuad']
|
| 22 |
-
|
| 23 |
-
default_chunk_size = 1000
|
| 24 |
-
chunk_overlap = 200
|
| 25 |
|
| 26 |
# Dictionary to store chunked documents
|
| 27 |
all_chunked_documents = []
|
| 28 |
-
# Load multiple datasets
|
| 29 |
datasets = {}
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
logging.info(f"Loading dataset: {data_set_name}")
|
| 32 |
datasets[data_set_name] = load_data(data_set_name)
|
| 33 |
|
| 34 |
# Set chunk size based on dataset name
|
| 35 |
-
chunk_size =
|
| 36 |
if data_set_name == 'cuad':
|
| 37 |
chunk_size = 4000 # Custom chunk size for 'cuad'
|
| 38 |
|
| 39 |
# Chunk documents
|
| 40 |
-
chunked_documents = chunk_documents(datasets[data_set_name], chunk_size=chunk_size, chunk_overlap=
|
| 41 |
all_chunked_documents.extend(chunked_documents) # Combine all chunks
|
| 42 |
|
| 43 |
# Access individual datasets
|
|
@@ -58,11 +50,13 @@ def main():
|
|
| 58 |
val_llm = initialize_validation_llm()
|
| 59 |
|
| 60 |
#Compute RMSE and AUC-ROC for entire dataset
|
| 61 |
-
|
|
|
|
| 62 |
#compute_rmse_auc_roc_metrics(gen_llm, val_llm, datasets[data_set_name], vector_store, 10)
|
| 63 |
|
| 64 |
# Launch the Gradio app
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
logging.info("Finished!!!")
|
| 68 |
|
|
|
|
| 1 |
import logging
|
| 2 |
+
from config import AppConfig, ConfigConstants
|
| 3 |
from data.load_dataset import load_data
|
| 4 |
from generator.compute_rmse_auc_roc_metrics import compute_rmse_auc_roc_metrics
|
| 5 |
from retriever.chunk_documents import chunk_documents
|
|
|
|
| 13 |
|
| 14 |
def main():
|
| 15 |
logging.info("Starting the RAG pipeline")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Dictionary to store chunked documents
|
| 18 |
all_chunked_documents = []
|
|
|
|
| 19 |
datasets = {}
|
| 20 |
+
|
| 21 |
+
# Load multiple datasets
|
| 22 |
+
for data_set_name in ConfigConstants.DATA_SET_NAMES:
|
| 23 |
logging.info(f"Loading dataset: {data_set_name}")
|
| 24 |
datasets[data_set_name] = load_data(data_set_name)
|
| 25 |
|
| 26 |
# Set chunk size based on dataset name
|
| 27 |
+
chunk_size = ConfigConstants.DEFAULT_CHUNK_SIZE
|
| 28 |
if data_set_name == 'cuad':
|
| 29 |
chunk_size = 4000 # Custom chunk size for 'cuad'
|
| 30 |
|
| 31 |
# Chunk documents
|
| 32 |
+
chunked_documents = chunk_documents(datasets[data_set_name], chunk_size=chunk_size, chunk_overlap=ConfigConstants.CHUNK_OVERLAP)
|
| 33 |
all_chunked_documents.extend(chunked_documents) # Combine all chunks
|
| 34 |
|
| 35 |
# Access individual datasets
|
|
|
|
| 50 |
val_llm = initialize_validation_llm()
|
| 51 |
|
| 52 |
#Compute RMSE and AUC-ROC for entire dataset
|
| 53 |
+
#Enable below code for calculation
|
| 54 |
+
#data_set_name = 'covidqa'
|
| 55 |
#compute_rmse_auc_roc_metrics(gen_llm, val_llm, datasets[data_set_name], vector_store, 10)
|
| 56 |
|
| 57 |
# Launch the Gradio app
|
| 58 |
+
config = AppConfig(vector_store= vector_store, gen_llm= gen_llm, val_llm= val_llm)
|
| 59 |
+
launch_gradio(config)
|
| 60 |
|
| 61 |
logging.info("Finished!!!")
|
| 62 |
|
retriever/embed_documents.py
CHANGED
|
@@ -3,9 +3,11 @@ import logging
|
|
| 3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 4 |
from langchain_community.vectorstores import FAISS
|
| 5 |
|
| 6 |
-
|
| 7 |
-
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L3-v2")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
if os.path.exists(embedding_path):
|
| 10 |
logging.info("Loading embeddings from local file")
|
| 11 |
vector_store = FAISS.load_local(embedding_path, embedding_model, allow_dangerous_deserialization=True)
|
|
|
|
| 3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 4 |
from langchain_community.vectorstores import FAISS
|
| 5 |
|
| 6 |
+
from config import ConfigConstants
|
|
|
|
| 7 |
|
| 8 |
+
def embed_documents(documents, embedding_path="embeddings.faiss"):
|
| 9 |
+
embedding_model = HuggingFaceEmbeddings(model_name=ConfigConstants.EMBEDDING_MODEL_NAME)
|
| 10 |
+
|
| 11 |
if os.path.exists(embedding_path):
|
| 12 |
logging.info("Loading embeddings from local file")
|
| 13 |
vector_store = FAISS.load_local(embedding_path, embedding_model, allow_dangerous_deserialization=True)
|
retriever/retrieve_documents.py
CHANGED
|
@@ -1,13 +1,19 @@
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
from transformers import pipeline
|
| 3 |
|
|
|
|
|
|
|
| 4 |
def retrieve_top_k_documents(vector_store, query, top_k=5):
|
| 5 |
documents = vector_store.similarity_search(query, k=top_k)
|
|
|
|
|
|
|
| 6 |
documents = rerank_documents(query, documents)
|
|
|
|
| 7 |
return documents
|
| 8 |
|
| 9 |
# Reranking: Cross-Encoder for refining top-k results
|
| 10 |
-
def rerank_documents(query, documents
|
| 11 |
"""
|
| 12 |
Re-rank documents using a cross-encoder model.
|
| 13 |
|
|
@@ -20,7 +26,7 @@ def rerank_documents(query, documents, reranker_model_name="cross-encoder/ms-mar
|
|
| 20 |
list: Re-ranked list of Document objects with updated scores.
|
| 21 |
"""
|
| 22 |
# Initialize the cross-encoder model
|
| 23 |
-
reranker = pipeline("text-classification", model=
|
| 24 |
|
| 25 |
# Pair the query with each document's text
|
| 26 |
rerank_inputs = [{"text": query, "text_pair": doc.page_content} for doc in documents]
|
|
@@ -28,12 +34,14 @@ def rerank_documents(query, documents, reranker_model_name="cross-encoder/ms-mar
|
|
| 28 |
# Get relevance scores for each query-document pair
|
| 29 |
scores = reranker(rerank_inputs)
|
| 30 |
|
| 31 |
-
|
| 32 |
for doc, score in zip(documents, scores):
|
| 33 |
-
doc.metadata["rerank_score"] = score[
|
| 34 |
|
| 35 |
# Sort documents by the rerank_score in descending order
|
| 36 |
documents = sorted(documents, key=lambda x: x.metadata.get("rerank_score", 0), reverse=True)
|
|
|
|
|
|
|
| 37 |
return documents
|
| 38 |
|
| 39 |
|
|
|
|
| 1 |
+
import logging
|
| 2 |
import numpy as np
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
+
from config import ConfigConstants
|
| 6 |
+
|
| 7 |
def retrieve_top_k_documents(vector_store, query, top_k=5):
|
| 8 |
documents = vector_store.similarity_search(query, k=top_k)
|
| 9 |
+
logging.info(f"Top {top_k} documents reterived for query")
|
| 10 |
+
|
| 11 |
documents = rerank_documents(query, documents)
|
| 12 |
+
|
| 13 |
return documents
|
| 14 |
|
| 15 |
# Reranking: Cross-Encoder for refining top-k results
|
| 16 |
+
def rerank_documents(query, documents):
|
| 17 |
"""
|
| 18 |
Re-rank documents using a cross-encoder model.
|
| 19 |
|
|
|
|
| 26 |
list: Re-ranked list of Document objects with updated scores.
|
| 27 |
"""
|
| 28 |
# Initialize the cross-encoder model
|
| 29 |
+
reranker = pipeline("text-classification", model=ConfigConstants.RE_RANKER_MODEL_NAME, top_k=1)
|
| 30 |
|
| 31 |
# Pair the query with each document's text
|
| 32 |
rerank_inputs = [{"text": query, "text_pair": doc.page_content} for doc in documents]
|
|
|
|
| 34 |
# Get relevance scores for each query-document pair
|
| 35 |
scores = reranker(rerank_inputs)
|
| 36 |
|
| 37 |
+
# Attach the new scores to the documents
|
| 38 |
for doc, score in zip(documents, scores):
|
| 39 |
+
doc.metadata["rerank_score"] = score[0]['score'] # Access score from the first item in the list
|
| 40 |
|
| 41 |
# Sort documents by the rerank_score in descending order
|
| 42 |
documents = sorted(documents, key=lambda x: x.metadata.get("rerank_score", 0), reverse=True)
|
| 43 |
+
logging.info("Re-ranked documents using a cross-encoder model")
|
| 44 |
+
|
| 45 |
return documents
|
| 46 |
|
| 47 |
|