Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ccc35d4
1
Parent(s):
385e56e
push
Browse files
app.py
CHANGED
|
@@ -3,10 +3,23 @@ import gradio as gr
|
|
| 3 |
import cv2
|
| 4 |
import tempfile
|
| 5 |
from ultralytics import YOLOv10
|
|
|
|
| 6 |
|
| 7 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
| 8 |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
@spaces.GPU
|
| 11 |
def yolov10_inference(image, conf_threshold):
|
| 12 |
|
|
@@ -17,6 +30,7 @@ def yolov10_inference(image, conf_threshold):
|
|
| 17 |
|
| 18 |
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
|
| 19 |
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def app():
|
|
@@ -39,23 +53,24 @@ def app():
|
|
| 39 |
time_limit=30
|
| 40 |
)
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
with gradio_app:
|
| 45 |
gr.HTML(
|
| 46 |
"""
|
| 47 |
<h1 style='text-align: center'>
|
| 48 |
-
|
| 49 |
</h1>
|
| 50 |
""")
|
| 51 |
gr.HTML(
|
| 52 |
"""
|
| 53 |
<h3 style='text-align: center'>
|
| 54 |
-
<a href='https://arxiv.org/abs/
|
| 55 |
</h3>
|
| 56 |
""")
|
| 57 |
with gr.Row():
|
| 58 |
with gr.Column():
|
| 59 |
app()
|
| 60 |
if __name__ == '__main__':
|
| 61 |
-
|
|
|
|
| 3 |
import cv2
|
| 4 |
import tempfile
|
| 5 |
from ultralytics import YOLOv10
|
| 6 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 7 |
|
| 8 |
image_processor = RTDetrImageProcessor.from_pretrained("PekingU/rtdetr_r50vd")
|
| 9 |
model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd")
|
| 10 |
|
| 11 |
+
def draw_bounding_boxes(image, results, model, threshold=0.3):
|
| 12 |
+
draw = ImageDraw.Draw(image)
|
| 13 |
+
for result in results:
|
| 14 |
+
for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
|
| 15 |
+
if score > threshold:
|
| 16 |
+
label = model.config.id2label[label_id.item()]
|
| 17 |
+
box = [round(i) for i in box.tolist()]
|
| 18 |
+
draw.rectangle(box, outline="red", width=3)
|
| 19 |
+
draw.text((box[0], box[1]), f"{label}: {score:.2f}", fill="red")
|
| 20 |
+
return image
|
| 21 |
+
|
| 22 |
+
|
| 23 |
@spaces.GPU
|
| 24 |
def yolov10_inference(image, conf_threshold):
|
| 25 |
|
|
|
|
| 30 |
|
| 31 |
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
|
| 32 |
|
| 33 |
+
return draw_bounding_boxes(image, results, model, threshold=conf_threshold)
|
| 34 |
|
| 35 |
|
| 36 |
def app():
|
|
|
|
| 53 |
time_limit=30
|
| 54 |
)
|
| 55 |
|
| 56 |
+
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
| 57 |
+
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
| 58 |
|
| 59 |
+
with gr.Blocks(css=css) as app:
|
|
|
|
| 60 |
gr.HTML(
|
| 61 |
"""
|
| 62 |
<h1 style='text-align: center'>
|
| 63 |
+
Near Real-Time Webcam Stream with RTDetr
|
| 64 |
</h1>
|
| 65 |
""")
|
| 66 |
gr.HTML(
|
| 67 |
"""
|
| 68 |
<h3 style='text-align: center'>
|
| 69 |
+
<a href='https://arxiv.org/abs/2304.08069' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
| 70 |
</h3>
|
| 71 |
""")
|
| 72 |
with gr.Row():
|
| 73 |
with gr.Column():
|
| 74 |
app()
|
| 75 |
if __name__ == '__main__':
|
| 76 |
+
app.launch()
|