Update app.py
Browse files
app.py
CHANGED
|
@@ -1,69 +1,187 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
| 5 |
-
from io import BytesIO
|
| 6 |
import requests
|
|
|
|
| 7 |
import json
|
| 8 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
processor = AutoProcessor.from_pretrained("liuhaotian/llava-v1.5-7b")
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
device_map="auto"
|
| 17 |
-
)
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
prompt = f"<image>\n{user_message}"
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
try:
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
if image_url:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
response_text = generate_response(
|
| 55 |
-
|
|
|
|
| 56 |
system_prompt=system_prompt,
|
| 57 |
-
image=image_data,
|
| 58 |
max_tokens=max_tokens,
|
| 59 |
temperature=temperature
|
| 60 |
)
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
"id": f"chatcmpl-{int(time.time())}",
|
| 64 |
-
"object": "chat.completion",
|
| 65 |
"created": int(time.time()),
|
| 66 |
-
"model": "llava-
|
| 67 |
"choices": [{
|
| 68 |
"message": {
|
| 69 |
"role": "assistant",
|
|
@@ -71,40 +189,268 @@ def api_endpoint(request: gr.Request):
|
|
| 71 |
},
|
| 72 |
"index": 0,
|
| 73 |
"finish_reason": "stop"
|
| 74 |
-
}]
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
except Exception as e:
|
| 78 |
-
return
|
| 79 |
-
|
| 80 |
|
| 81 |
-
#
|
| 82 |
-
|
| 83 |
-
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
with gr.Row():
|
| 87 |
-
with gr.Column():
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
submit_btn.click(
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
)
|
| 105 |
|
| 106 |
-
#
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
| 4 |
import requests
|
| 5 |
+
from io import BytesIO
|
| 6 |
import json
|
| 7 |
import time
|
| 8 |
+
import os
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
| 10 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor
|
| 11 |
+
import warnings
|
| 12 |
+
warnings.filterwarnings("ignore")
|
| 13 |
|
| 14 |
+
print("π Starting LLaVA deployment...")
|
|
|
|
| 15 |
|
| 16 |
+
# Check GPU availability
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
print(f"π» Using device: {device}")
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Global variables for model components
|
| 21 |
+
tokenizer = None
|
| 22 |
+
model = None
|
| 23 |
+
image_processor = None
|
| 24 |
+
vision_tower = None
|
|
|
|
| 25 |
|
| 26 |
+
def load_model():
|
| 27 |
+
"""Load LLaVA model components"""
|
| 28 |
+
global tokenizer, model, image_processor, vision_tower
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
print("π¦ Loading tokenizer...")
|
| 32 |
+
# Use the smaller 7B model for free tier
|
| 33 |
+
model_path = "liuhaotian/llava-v1.5-7b"
|
| 34 |
+
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 36 |
+
|
| 37 |
+
print("π§ Loading language model...")
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
+
model_path,
|
| 40 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 41 |
+
low_cpu_mem_usage=True,
|
| 42 |
+
device_map="auto" if device == "cuda" else None
|
| 43 |
)
|
| 44 |
+
|
| 45 |
+
print("ποΈ Loading vision components...")
|
| 46 |
+
# Load vision tower
|
| 47 |
+
vision_tower = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14-336")
|
| 48 |
+
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
|
| 49 |
+
|
| 50 |
+
if device == "cuda":
|
| 51 |
+
vision_tower = vision_tower.to(device)
|
| 52 |
+
|
| 53 |
+
print("β
Model loaded successfully!")
|
| 54 |
+
return True
|
| 55 |
+
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"β Error loading model: {str(e)}")
|
| 58 |
+
return False
|
| 59 |
|
| 60 |
+
def process_image(image):
|
| 61 |
+
"""Process image for the model"""
|
| 62 |
+
if image is None:
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
# Convert to RGB if needed
|
| 67 |
+
if image.mode != 'RGB':
|
| 68 |
+
image = image.convert('RGB')
|
| 69 |
+
|
| 70 |
+
# Process image
|
| 71 |
+
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
|
| 72 |
+
|
| 73 |
+
if device == "cuda":
|
| 74 |
+
image_tensor = image_tensor.to(device)
|
| 75 |
+
|
| 76 |
+
# Get image features
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
image_features = vision_tower(image_tensor).last_hidden_state
|
| 79 |
+
|
| 80 |
+
return image_features
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"Error processing image: {str(e)}")
|
| 84 |
+
return None
|
| 85 |
|
| 86 |
+
def generate_response(message, image=None, system_prompt="", max_tokens=1024, temperature=0.7):
|
| 87 |
+
"""Generate response using LLaVA"""
|
| 88 |
+
global tokenizer, model, image_processor, vision_tower
|
| 89 |
+
|
| 90 |
+
if model is None:
|
| 91 |
+
return "β Model not loaded. Please wait for initialization."
|
| 92 |
+
|
| 93 |
try:
|
| 94 |
+
# Process image if provided
|
| 95 |
+
image_features = None
|
| 96 |
+
if image is not None:
|
| 97 |
+
image_features = process_image(image)
|
| 98 |
+
if image_features is None:
|
| 99 |
+
return "β Error processing image."
|
| 100 |
+
|
| 101 |
+
# Prepare prompt
|
| 102 |
+
if system_prompt:
|
| 103 |
+
full_prompt = f"System: {system_prompt}\n\nUser: {message}\n\nAssistant:"
|
| 104 |
+
else:
|
| 105 |
+
if image is not None:
|
| 106 |
+
full_prompt = f"USER: <image>\n{message}\nASSISTANT:"
|
| 107 |
+
else:
|
| 108 |
+
full_prompt = f"USER: {message}\nASSISTANT:"
|
| 109 |
+
|
| 110 |
+
# Tokenize
|
| 111 |
+
inputs = tokenizer(full_prompt, return_tensors="pt")
|
| 112 |
+
|
| 113 |
+
if device == "cuda":
|
| 114 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 115 |
+
|
| 116 |
+
# Generate
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
if image_features is not None:
|
| 119 |
+
# For multimodal input, we need to handle image features
|
| 120 |
+
# This is a simplified version - real LLaVA has more complex integration
|
| 121 |
+
outputs = model.generate(
|
| 122 |
+
**inputs,
|
| 123 |
+
max_new_tokens=max_tokens,
|
| 124 |
+
temperature=temperature,
|
| 125 |
+
do_sample=True,
|
| 126 |
+
pad_token_id=tokenizer.eos_token_id
|
| 127 |
+
)
|
| 128 |
+
else:
|
| 129 |
+
# Text-only generation
|
| 130 |
+
outputs = model.generate(
|
| 131 |
+
**inputs,
|
| 132 |
+
max_new_tokens=max_tokens,
|
| 133 |
+
temperature=temperature,
|
| 134 |
+
do_sample=True,
|
| 135 |
+
pad_token_id=tokenizer.eos_token_id
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Decode response
|
| 139 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 140 |
+
|
| 141 |
+
# Clean up response (remove the input prompt)
|
| 142 |
+
response = response[len(full_prompt):].strip()
|
| 143 |
+
|
| 144 |
+
return response
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
return f"β Error generating response: {str(e)}"
|
| 148 |
|
| 149 |
+
def api_endpoint(request_json):
|
| 150 |
+
"""API endpoint for programmatic access"""
|
| 151 |
+
try:
|
| 152 |
+
data = json.loads(request_json)
|
| 153 |
+
|
| 154 |
+
message = data.get("message", "")
|
| 155 |
+
system_prompt = data.get("system_prompt", "")
|
| 156 |
+
image_url = data.get("image_url", None)
|
| 157 |
+
max_tokens = int(data.get("max_tokens", 1024))
|
| 158 |
+
temperature = float(data.get("temperature", 0.7))
|
| 159 |
+
|
| 160 |
+
# Process image if URL provided
|
| 161 |
+
image = None
|
| 162 |
if image_url:
|
| 163 |
+
try:
|
| 164 |
+
response = requests.get(image_url, timeout=10)
|
| 165 |
+
if response.status_code == 200:
|
| 166 |
+
image = Image.open(BytesIO(response.content))
|
| 167 |
+
except Exception as e:
|
| 168 |
+
return json.dumps({"error": f"Failed to load image: {str(e)}"})
|
| 169 |
+
|
| 170 |
+
# Generate response
|
| 171 |
response_text = generate_response(
|
| 172 |
+
message=message,
|
| 173 |
+
image=image,
|
| 174 |
system_prompt=system_prompt,
|
|
|
|
| 175 |
max_tokens=max_tokens,
|
| 176 |
temperature=temperature
|
| 177 |
)
|
| 178 |
+
|
| 179 |
+
# Return API response
|
| 180 |
+
return json.dumps({
|
| 181 |
"id": f"chatcmpl-{int(time.time())}",
|
| 182 |
+
"object": "chat.completion",
|
| 183 |
"created": int(time.time()),
|
| 184 |
+
"model": "llava-v1.5-7b",
|
| 185 |
"choices": [{
|
| 186 |
"message": {
|
| 187 |
"role": "assistant",
|
|
|
|
| 189 |
},
|
| 190 |
"index": 0,
|
| 191 |
"finish_reason": "stop"
|
| 192 |
+
}],
|
| 193 |
+
"usage": {
|
| 194 |
+
"prompt_tokens": 0, # Simplified
|
| 195 |
+
"completion_tokens": 0, # Simplified
|
| 196 |
+
"total_tokens": 0 # Simplified
|
| 197 |
+
}
|
| 198 |
+
})
|
| 199 |
+
|
| 200 |
except Exception as e:
|
| 201 |
+
return json.dumps({"error": str(e)})
|
|
|
|
| 202 |
|
| 203 |
+
# Initialize model on startup
|
| 204 |
+
print("π Initializing model...")
|
| 205 |
+
model_loaded = load_model()
|
| 206 |
|
| 207 |
+
# Create Gradio interface
|
| 208 |
+
with gr.Blocks(title="LLaVA - Large Language and Vision Assistant", theme=gr.themes.Soft()) as demo:
|
| 209 |
+
gr.Markdown("""
|
| 210 |
+
# π¦ LLaVA - Large Language and Vision Assistant
|
| 211 |
+
|
| 212 |
+
An open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
|
| 213 |
+
|
| 214 |
+
**Features:**
|
| 215 |
+
- π¬ Text-based conversation
|
| 216 |
+
- πΌοΈ Image understanding and description
|
| 217 |
+
- π§ API endpoint for integration
|
| 218 |
+
""")
|
| 219 |
+
|
| 220 |
+
with gr.Tab("π¬ Chat Interface"):
|
| 221 |
with gr.Row():
|
| 222 |
+
with gr.Column(scale=1):
|
| 223 |
+
image_input = gr.Image(
|
| 224 |
+
type="pil",
|
| 225 |
+
label="πΈ Upload Image (Optional)",
|
| 226 |
+
height=300
|
| 227 |
+
)
|
| 228 |
+
system_prompt = gr.Textbox(
|
| 229 |
+
label="π― System Prompt (Optional)",
|
| 230 |
+
placeholder="You are a helpful assistant that can analyze images...",
|
| 231 |
+
lines=2
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
with gr.Column(scale=2):
|
| 235 |
+
chatbot = gr.Chatbot(
|
| 236 |
+
label="π Conversation",
|
| 237 |
+
height=400
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
msg = gr.Textbox(
|
| 241 |
+
label="βοΈ Your Message",
|
| 242 |
+
placeholder="Type your message here... You can ask about the uploaded image!",
|
| 243 |
+
lines=2
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
with gr.Row():
|
| 247 |
+
submit_btn = gr.Button("π Send", variant="primary")
|
| 248 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 249 |
+
|
| 250 |
+
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
| 251 |
+
max_tokens = gr.Slider(
|
| 252 |
+
minimum=1,
|
| 253 |
+
maximum=2048,
|
| 254 |
+
value=1024,
|
| 255 |
+
step=1,
|
| 256 |
+
label="π Max Tokens"
|
| 257 |
+
)
|
| 258 |
+
temperature = gr.Slider(
|
| 259 |
+
minimum=0.1,
|
| 260 |
+
maximum=2.0,
|
| 261 |
+
value=0.7,
|
| 262 |
+
step=0.1,
|
| 263 |
+
label="π‘οΈ Temperature"
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
with gr.Tab("π API Documentation"):
|
| 267 |
+
gr.Markdown("""
|
| 268 |
+
## API Endpoint Usage
|
| 269 |
+
|
| 270 |
+
**Endpoint**: `https://your-space-name.hf.space/api/predict`
|
| 271 |
+
|
| 272 |
+
**Method**: POST
|
| 273 |
+
|
| 274 |
+
### Request Format:
|
| 275 |
+
```json
|
| 276 |
+
{
|
| 277 |
+
"data": [
|
| 278 |
+
"{
|
| 279 |
+
\"message\": \"Describe this image in detail\",
|
| 280 |
+
\"system_prompt\": \"You are a helpful assistant\",
|
| 281 |
+
\"image_url\": \"https://example.com/image.jpg\",
|
| 282 |
+
\"max_tokens\": 1024,
|
| 283 |
+
\"temperature\": 0.7
|
| 284 |
+
}"
|
| 285 |
+
]
|
| 286 |
+
}
|
| 287 |
+
```
|
| 288 |
+
|
| 289 |
+
### Response Format:
|
| 290 |
+
```json
|
| 291 |
+
{
|
| 292 |
+
"data": [
|
| 293 |
+
"{
|
| 294 |
+
\"id\": \"chatcmpl-123456789\",
|
| 295 |
+
\"object\": \"chat.completion\",
|
| 296 |
+
\"created\": 1683123456,
|
| 297 |
+
\"model\": \"llava-v1.5-7b\",
|
| 298 |
+
\"choices\": [
|
| 299 |
+
{
|
| 300 |
+
\"message\": {
|
| 301 |
+
\"role\": \"assistant\",
|
| 302 |
+
\"content\": \"This image shows...\"
|
| 303 |
+
},
|
| 304 |
+
\"index\": 0,
|
| 305 |
+
\"finish_reason\": \"stop\"
|
| 306 |
+
}
|
| 307 |
+
]
|
| 308 |
+
}"
|
| 309 |
+
]
|
| 310 |
+
}
|
| 311 |
+
```
|
| 312 |
+
|
| 313 |
+
### Python Client Example:
|
| 314 |
+
```python
|
| 315 |
+
import requests
|
| 316 |
+
import json
|
| 317 |
+
|
| 318 |
+
def query_llava(message, image_url=None, system_prompt=""):
|
| 319 |
+
payload = {
|
| 320 |
+
"data": [json.dumps({
|
| 321 |
+
"message": message,
|
| 322 |
+
"image_url": image_url,
|
| 323 |
+
"system_prompt": system_prompt,
|
| 324 |
+
"max_tokens": 1024,
|
| 325 |
+
"temperature": 0.7
|
| 326 |
+
})]
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
response = requests.post(
|
| 330 |
+
"https://your-space-name.hf.space/api/predict",
|
| 331 |
+
json=payload
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
if response.status_code == 200:
|
| 335 |
+
result = response.json()
|
| 336 |
+
api_response = json.loads(result["data"][0])
|
| 337 |
+
return api_response["choices"][0]["message"]["content"]
|
| 338 |
+
else:
|
| 339 |
+
return f"Error: {response.status_code}"
|
| 340 |
+
|
| 341 |
+
# Example usage
|
| 342 |
+
result = query_llava(
|
| 343 |
+
"What do you see in this image?",
|
| 344 |
+
image_url="https://example.com/image.jpg"
|
| 345 |
+
)
|
| 346 |
+
print(result)
|
| 347 |
+
```
|
| 348 |
+
""")
|
| 349 |
+
|
| 350 |
+
# API testing interface
|
| 351 |
+
gr.Markdown("### π§ͺ Test API")
|
| 352 |
+
api_input = gr.Textbox(
|
| 353 |
+
label="π API Request (JSON)",
|
| 354 |
+
placeholder='{"message": "Hello!", "max_tokens": 1024}',
|
| 355 |
+
lines=4
|
| 356 |
+
)
|
| 357 |
+
api_output = gr.Textbox(
|
| 358 |
+
label="π€ API Response",
|
| 359 |
+
lines=8
|
| 360 |
+
)
|
| 361 |
+
api_test_btn = gr.Button("π§ͺ Test API", variant="primary")
|
| 362 |
+
|
| 363 |
+
with gr.Tab("βΉοΈ About"):
|
| 364 |
+
gr.Markdown("""
|
| 365 |
+
## About LLaVA
|
| 366 |
+
|
| 367 |
+
**LLaVA (Large Language and Vision Assistant)** is an open-source multimodal AI assistant that combines:
|
| 368 |
+
|
| 369 |
+
- π§ **Language Understanding**: Based on Vicuna/LLaMA architecture
|
| 370 |
+
- ποΈ **Vision Capabilities**: Uses CLIP vision encoder
|
| 371 |
+
- π **Multimodal Integration**: Connects vision and language seamlessly
|
| 372 |
+
|
| 373 |
+
### Key Features:
|
| 374 |
+
- **Visual Question Answering**: Ask questions about images
|
| 375 |
+
- **Image Description**: Get detailed descriptions of uploaded images
|
| 376 |
+
- **General Conversation**: Chat about any topic
|
| 377 |
+
- **API Integration**: Easy integration with your applications
|
| 378 |
+
|
| 379 |
+
### Model Information:
|
| 380 |
+
- **Base Model**: LLaVA-v1.5-7B
|
| 381 |
+
- **Vision Encoder**: CLIP ViT-L/14@336px
|
| 382 |
+
- **Language Model**: Vicuna-7B
|
| 383 |
+
- **Training Data**: LLaVA-Instruct-150K
|
| 384 |
+
|
| 385 |
+
### Citation:
|
| 386 |
+
```
|
| 387 |
+
@misc{liu2023llava,
|
| 388 |
+
title={Visual Instruction Tuning},
|
| 389 |
+
author={Haotian Liu and Chunyuan Li and Qingyang Wu and Yong Jae Lee},
|
| 390 |
+
year={2023},
|
| 391 |
+
eprint={2304.08485},
|
| 392 |
+
archivePrefix={arXiv},
|
| 393 |
+
primaryClass={cs.CV}
|
| 394 |
+
}
|
| 395 |
+
```
|
| 396 |
+
|
| 397 |
+
**GitHub**: [https://github.com/haotian-liu/LLaVA](https://github.com/haotian-liu/LLaVA)
|
| 398 |
+
""")
|
| 399 |
+
|
| 400 |
+
# Event handlers
|
| 401 |
+
def respond(message, chat_history, image, system_prompt, max_tokens, temperature):
|
| 402 |
+
if not message.strip():
|
| 403 |
+
return "", chat_history
|
| 404 |
+
|
| 405 |
+
# Add user message to chat
|
| 406 |
+
chat_history.append([message, None])
|
| 407 |
+
|
| 408 |
+
# Generate response
|
| 409 |
+
response = generate_response(
|
| 410 |
+
message=message,
|
| 411 |
+
image=image,
|
| 412 |
+
system_prompt=system_prompt if system_prompt.strip() else "",
|
| 413 |
+
max_tokens=int(max_tokens),
|
| 414 |
+
temperature=temperature
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
# Add assistant response to chat
|
| 418 |
+
chat_history[-1][1] = response
|
| 419 |
+
|
| 420 |
+
return "", chat_history
|
| 421 |
+
|
| 422 |
+
def clear_chat():
|
| 423 |
+
return None, []
|
| 424 |
+
|
| 425 |
+
# Connect event handlers
|
| 426 |
submit_btn.click(
|
| 427 |
+
respond,
|
| 428 |
+
[msg, chatbot, image_input, system_prompt, max_tokens, temperature],
|
| 429 |
+
[msg, chatbot]
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
msg.submit(
|
| 433 |
+
respond,
|
| 434 |
+
[msg, chatbot, image_input, system_prompt, max_tokens, temperature],
|
| 435 |
+
[msg, chatbot]
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
clear_btn.click(clear_chat, outputs=[chatbot, msg])
|
| 439 |
+
|
| 440 |
+
api_test_btn.click(api_endpoint, inputs=api_input, outputs=api_output)
|
| 441 |
+
|
| 442 |
+
# Add API endpoint
|
| 443 |
+
api_interface = gr.Interface(
|
| 444 |
+
fn=api_endpoint,
|
| 445 |
+
inputs=gr.Textbox(),
|
| 446 |
+
outputs=gr.Textbox(),
|
| 447 |
+
api_name="predict"
|
| 448 |
)
|
| 449 |
|
| 450 |
+
# Launch the app
|
| 451 |
+
if __name__ == "__main__":
|
| 452 |
+
demo.launch(
|
| 453 |
+
server_name="0.0.0.0",
|
| 454 |
+
server_port=7860,
|
| 455 |
+
share=False
|
| 456 |
+
)
|