Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,9 +4,76 @@ import tensorflow as tf
|
|
| 4 |
|
| 5 |
model = tf.saved_model.load('arabert_pretrained')
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
iface = gr.Interface(fn=sentiment_analysis, inputs="text", outputs="text")
|
| 12 |
iface.launch()
|
|
|
|
| 4 |
|
| 5 |
model = tf.saved_model.load('arabert_pretrained')
|
| 6 |
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
import pandas as pd
|
| 10 |
+
df = pd.read_csv('put\data_cleaned1.csv')
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from transformers import TFAutoModel, AutoTokenizer
|
| 14 |
+
arabert_tokenizer = AutoTokenizer.from_pretrained('aubmindlab/bert-base-arabert')
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import pandas as pd
|
| 19 |
+
|
| 20 |
+
# Assuming your DataFrame is named 'df'
|
| 21 |
+
# Split the DataFrame into two parts: label=1 and label=0
|
| 22 |
+
label_1_df = df[df['data_labels'] == 1]
|
| 23 |
+
label_0_df = df[df['data_labels'] == 0]
|
| 24 |
+
|
| 25 |
+
# Sample an equal number of rows from each label
|
| 26 |
+
sample_size = min(len(label_1_df), len(label_0_df))
|
| 27 |
+
sample_label_1 = label_1_df.sample(n=sample_size, random_state=42)
|
| 28 |
+
sample_label_0 = label_0_df.sample(n=sample_size, random_state=42)
|
| 29 |
+
|
| 30 |
+
# Concatenate the two samples to get the final balanced sample
|
| 31 |
+
balanced_sample = pd.concat([sample_label_1, sample_label_0])
|
| 32 |
+
|
| 33 |
+
# Shuffle the rows in the balanced sample
|
| 34 |
+
balanced_sample = balanced_sample.sample(frac=1, random_state=42)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
balanced_sample.reset_index(inplace=True,drop=True)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
from sklearn.model_selection import train_test_split
|
| 41 |
+
|
| 42 |
+
tweets = balanced_sample['cleaned_text']
|
| 43 |
+
labels = balanced_sample['data_labels']
|
| 44 |
+
|
| 45 |
+
X_train, X_test, y_train, y_test = train_test_split(tweets, labels,stratify=labels, test_size=0.15, random_state=1)
|
| 46 |
+
def preprocess_input_data(texts, tokenizer, max_len=120):
|
| 47 |
+
"""Tokenize and preprocess the input data for Arabert model.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
texts (list): List of text strings.
|
| 51 |
+
tokenizer (AutoTokenizer): Arabert tokenizer from transformers library.
|
| 52 |
+
max_len (int, optional): Maximum sequence length. Defaults to 120.
|
| 53 |
+
|
| 54 |
+
Returns:
|
| 55 |
+
Tuple of numpy arrays: Input token IDs and attention masks.
|
| 56 |
+
"""
|
| 57 |
+
# Tokenize the text data using the tokenizer
|
| 58 |
+
tokenized_data = [tokenizer.encode_plus(
|
| 59 |
+
t,
|
| 60 |
+
max_length=max_len,
|
| 61 |
+
pad_to_max_length=True,
|
| 62 |
+
add_special_tokens=True) for t in texts]
|
| 63 |
+
|
| 64 |
+
# Extract tokenized input IDs and attention masks
|
| 65 |
+
input_ids = [data['input_ids'] for data in tokenized_data]
|
| 66 |
+
attention_mask = [data['attention_mask'] for data in tokenized_data]
|
| 67 |
+
|
| 68 |
+
return input_ids, attention_mask
|
| 69 |
+
def sentiment_analysis(text):
|
| 70 |
+
X_input_ids, X_attention_mask = preprocess_input_data(text, arabert_tokenizer)
|
| 71 |
+
predictions = modelez(X_input_ids)
|
| 72 |
+
a=predictions.numpy()
|
| 73 |
+
return a
|
| 74 |
+
|
| 75 |
+
import gradio as gr
|
| 76 |
+
|
| 77 |
|
| 78 |
iface = gr.Interface(fn=sentiment_analysis, inputs="text", outputs="text")
|
| 79 |
iface.launch()
|