Spaces:
Running
Running
| # analyze_sentiment.py | |
| # This script analyzes the sentiment of the summarized content using the Hugging Face Transformers library. | |
| from transformers import pipeline | |
| # Load zero-shot classification pipeline | |
| classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
| def analyze_summary(summary): | |
| """ | |
| Analyze the sentiment of the given summary using zero-shot classification. | |
| Returns a tuple of (sentiment, score). | |
| """ | |
| try: | |
| if not summary.strip(): | |
| return "No input provided.", 0.0 | |
| candidate_labels = ["positive", "neutral", "negative"] | |
| result = classifier(summary, candidate_labels) | |
| sentiment = result['labels'][0].capitalize() | |
| score = float(result['scores'][0]) | |
| return sentiment, score | |
| except Exception as e: | |
| return f"Error analyzing sentiment: {str(e)}", 0.0 |