Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import cluster_news
|
| 4 |
+
import extract_news
|
| 5 |
+
import summarizer
|
| 6 |
+
import analyze_sentiment
|
| 7 |
+
import gather_news
|
| 8 |
+
|
| 9 |
+
# ------------------ Utilities ------------------
|
| 10 |
+
|
| 11 |
+
def fetch_content(topic):
|
| 12 |
+
articles = gather_news.fetch_articles_newsapi(topic)
|
| 13 |
+
if isinstance(articles, str):
|
| 14 |
+
articles = gather_news.fetch_articles_google(topic)
|
| 15 |
+
if isinstance(articles, str):
|
| 16 |
+
return None
|
| 17 |
+
try:
|
| 18 |
+
articles = sorted(articles, key=lambda x: x.get("publishedAt", ""), reverse=True)[:10]
|
| 19 |
+
except Exception:
|
| 20 |
+
return None
|
| 21 |
+
return articles
|
| 22 |
+
|
| 23 |
+
def fetch_and_process_latest_news(sentiment_filters):
|
| 24 |
+
topic = "Top Headlines"
|
| 25 |
+
articles = gather_news.fetch_articles_newsapi("top headlines")
|
| 26 |
+
if isinstance(articles, str) or not articles:
|
| 27 |
+
return sentiment_filters, "### No latest news available", "", "", "", "", None
|
| 28 |
+
|
| 29 |
+
articles = sorted(articles, key=lambda x: x.get("publishedAt", ""), reverse=True)[:10]
|
| 30 |
+
extracted_articles = extract_summarize_and_analyze_articles(articles)
|
| 31 |
+
|
| 32 |
+
if not extracted_articles:
|
| 33 |
+
return sentiment_filters, "### No content to display", "", "", "", "", None
|
| 34 |
+
|
| 35 |
+
df = pd.DataFrame(extracted_articles)
|
| 36 |
+
result = cluster_news.cluster_and_label_articles(df, content_column="content", summary_column="summary")
|
| 37 |
+
cluster_md_blocks = display_clusters_as_columns(result, sentiment_filters)
|
| 38 |
+
csv_file, _ = save_clustered_articles(result["dataframe"], topic)
|
| 39 |
+
|
| 40 |
+
return sentiment_filters, *cluster_md_blocks, csv_file
|
| 41 |
+
|
| 42 |
+
def extract_summarize_and_analyze_articles(articles):
|
| 43 |
+
extracted_articles = []
|
| 44 |
+
for article in articles:
|
| 45 |
+
url = article.get("url")
|
| 46 |
+
if url:
|
| 47 |
+
content, _ = extract_news.extract_full_content(url)
|
| 48 |
+
if content:
|
| 49 |
+
summary = summarizer.generate_summary(content)
|
| 50 |
+
sentiment, score = analyze_sentiment.analyze_summary(summary)
|
| 51 |
+
extracted_articles.append({
|
| 52 |
+
"title": article.get("title", "No title"),
|
| 53 |
+
"url": url,
|
| 54 |
+
"source": article.get("source", "Unknown"),
|
| 55 |
+
"author": article.get("author", "Unknown"),
|
| 56 |
+
"publishedAt": article.get("publishedAt", "Unknown"),
|
| 57 |
+
"content": content,
|
| 58 |
+
"summary": summary,
|
| 59 |
+
"sentiment": sentiment,
|
| 60 |
+
"score": score
|
| 61 |
+
})
|
| 62 |
+
return extracted_articles
|
| 63 |
+
|
| 64 |
+
def extract_summarize_and_analyze_content_from_file(files):
|
| 65 |
+
extracted_articles = []
|
| 66 |
+
for file in files:
|
| 67 |
+
with open(file.name, "r", encoding="utf-8") as f:
|
| 68 |
+
content = f.read()
|
| 69 |
+
if content.strip():
|
| 70 |
+
summary = summarizer.generate_summary(content)
|
| 71 |
+
sentiment, score = analyze_sentiment.analyze_summary(summary)
|
| 72 |
+
extracted_articles.append({
|
| 73 |
+
"title": "Custom File",
|
| 74 |
+
"url": "N/A",
|
| 75 |
+
"source": "Uploaded File",
|
| 76 |
+
"author": "Unknown",
|
| 77 |
+
"publishedAt": "Unknown",
|
| 78 |
+
"content": content,
|
| 79 |
+
"summary": summary,
|
| 80 |
+
"sentiment": sentiment,
|
| 81 |
+
"score": score
|
| 82 |
+
})
|
| 83 |
+
return extracted_articles
|
| 84 |
+
|
| 85 |
+
def extract_summarize_and_analyze_content_from_urls(urls):
|
| 86 |
+
extracted_articles = []
|
| 87 |
+
for url in urls:
|
| 88 |
+
content, title = extract_news.extract_full_content(url)
|
| 89 |
+
if content: # Only proceed if content is successfully extracted
|
| 90 |
+
summary = summarizer.generate_summary(content)
|
| 91 |
+
sentiment, score = analyze_sentiment.analyze_summary(summary)
|
| 92 |
+
extracted_articles.append({
|
| 93 |
+
"title": title if title else "Untitled Article",
|
| 94 |
+
"url": url,
|
| 95 |
+
"source": "External Link",
|
| 96 |
+
"author": "Unknown",
|
| 97 |
+
"publishedAt": "Unknown",
|
| 98 |
+
"content": content,
|
| 99 |
+
"summary": summary,
|
| 100 |
+
"sentiment": sentiment,
|
| 101 |
+
"score": score
|
| 102 |
+
})
|
| 103 |
+
return extracted_articles
|
| 104 |
+
|
| 105 |
+
def display_clusters_as_columns(result, sentiment_filters=None):
|
| 106 |
+
df = result["dataframe"]
|
| 107 |
+
detected_topics = result.get("detected_topics", {})
|
| 108 |
+
df["sentiment"] = df["sentiment"].str.capitalize()
|
| 109 |
+
|
| 110 |
+
if sentiment_filters:
|
| 111 |
+
df = df[df["sentiment"].isin(sentiment_filters)]
|
| 112 |
+
|
| 113 |
+
if df.empty:
|
| 114 |
+
return ["### ⚠️ No matching articles."] + [""] * 4
|
| 115 |
+
|
| 116 |
+
clusters = df.groupby("cluster_label")
|
| 117 |
+
markdown_blocks = []
|
| 118 |
+
|
| 119 |
+
for cluster_label, articles in clusters:
|
| 120 |
+
cluster_md = f"### 🧩 Cluster {cluster_label}\n"
|
| 121 |
+
if cluster_label in detected_topics:
|
| 122 |
+
topics = detected_topics[cluster_label]
|
| 123 |
+
cluster_md += f"**Primary Topic:** {topics['primary_focus']}\n\n"
|
| 124 |
+
if topics["related_topics"]:
|
| 125 |
+
cluster_md += f"**Related Topics:** {', '.join(topics['related_topics'])}\n\n"
|
| 126 |
+
cluster_md += f"**Articles:** {len(articles)}\n\n"
|
| 127 |
+
for _, article in articles.iterrows():
|
| 128 |
+
cluster_md += (
|
| 129 |
+
f"#### 📰 {article['title']}\n"
|
| 130 |
+
f"- **Source:** {article['source']}\n"
|
| 131 |
+
f"- **Sentiment:** {article['sentiment']}\n"
|
| 132 |
+
f"<details><summary><strong>Summary</strong></summary>\n"
|
| 133 |
+
f"{article['summary']}\n"
|
| 134 |
+
f"</details>\n"
|
| 135 |
+
f"- [Read Full Article]({article['url']})\n\n"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
markdown_blocks.append(cluster_md)
|
| 139 |
+
|
| 140 |
+
while len(markdown_blocks) < 5:
|
| 141 |
+
markdown_blocks.append("")
|
| 142 |
+
|
| 143 |
+
return markdown_blocks[:5]
|
| 144 |
+
|
| 145 |
+
def save_clustered_articles(df, topic):
|
| 146 |
+
if df.empty:
|
| 147 |
+
return None, None
|
| 148 |
+
csv_file = f"{topic.replace(' ', '_')}_clustered_articles.csv"
|
| 149 |
+
df.to_csv(csv_file, index=False)
|
| 150 |
+
return csv_file, None
|
| 151 |
+
|
| 152 |
+
# ------------------ Pipeline Trigger ------------------
|
| 153 |
+
|
| 154 |
+
def update_ui_with_columns(topic, files, urls, sentiment_filters):
|
| 155 |
+
extracted_articles = []
|
| 156 |
+
|
| 157 |
+
if topic.strip():
|
| 158 |
+
articles = fetch_content(topic)
|
| 159 |
+
if articles:
|
| 160 |
+
extracted_articles.extend(extract_summarize_and_analyze_articles(articles))
|
| 161 |
+
|
| 162 |
+
if files:
|
| 163 |
+
extracted_articles.extend(extract_summarize_and_analyze_content_from_file(files))
|
| 164 |
+
|
| 165 |
+
if urls:
|
| 166 |
+
url_list = [url.strip() for url in urls.split("\n") if url.strip()]
|
| 167 |
+
extracted_articles.extend(extract_summarize_and_analyze_content_from_urls(url_list))
|
| 168 |
+
|
| 169 |
+
if not extracted_articles:
|
| 170 |
+
return sentiment_filters, "### No content to display", "", "", "", "", None
|
| 171 |
+
|
| 172 |
+
df = pd.DataFrame(extracted_articles)
|
| 173 |
+
result = cluster_news.cluster_and_label_articles(df, content_column="content", summary_column="summary")
|
| 174 |
+
cluster_md_blocks = display_clusters_as_columns(result, sentiment_filters)
|
| 175 |
+
csv_file, _ = save_clustered_articles(result["dataframe"], topic or "batch_upload")
|
| 176 |
+
|
| 177 |
+
return sentiment_filters, *cluster_md_blocks, csv_file
|
| 178 |
+
|
| 179 |
+
def clear_interface():
|
| 180 |
+
return (
|
| 181 |
+
"", # topic_input
|
| 182 |
+
["Positive", "Neutral", "Negative"],# sentiment_filter
|
| 183 |
+
gr.update(value=None), # uploaded_files (reset file upload)
|
| 184 |
+
"", # urls_input
|
| 185 |
+
"", "", "", "", "", # cluster columns 0–4
|
| 186 |
+
gr.update(value=None) # csv_output (reset download file)
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
# ------------------ Gradio UI ------------------
|
| 191 |
+
|
| 192 |
+
with gr.Blocks(theme=gr.themes.Base(), css=".gr-markdown { margin: 10px; }") as demo:
|
| 193 |
+
|
| 194 |
+
# Header Section
|
| 195 |
+
gr.Markdown("# 📰 Quick Pulse")
|
| 196 |
+
gr.Markdown("### AI-Powered News Summarization with Real-Time Sentiment and Topic Insights")
|
| 197 |
+
gr.Markdown(
|
| 198 |
+
"From headlines to insight, Quick Pulse summarizes news stories, captures emotional context, and clusters related topics to provide structured intelligence—faster than ever")
|
| 199 |
+
|
| 200 |
+
# Input Section
|
| 201 |
+
gr.Markdown("---") # Horizontal line for separation
|
| 202 |
+
with gr.Accordion("🗞️ Latest Top Headlines", open=False):
|
| 203 |
+
latest_news_button = gr.Button("Fetch & Summarize Top 10 Headlines")
|
| 204 |
+
|
| 205 |
+
with gr.Row():
|
| 206 |
+
topic_input = gr.Textbox(label="Enter Topic", placeholder="e.g. climate change")
|
| 207 |
+
sentiment_filter = gr.CheckboxGroup(choices=["Positive", "Neutral", "Negative"], value=["Positive", "Neutral", "Negative"], label="Sentiment Filter")
|
| 208 |
+
csv_output = gr.File(label="📁 Download Clustered Digest CSV")
|
| 209 |
+
|
| 210 |
+
with gr.Accordion("📂 Upload Articles (.txt files)", open=False):
|
| 211 |
+
uploaded_files = gr.File(label="Upload .txt Files", file_types=[".txt"], file_count="multiple")
|
| 212 |
+
|
| 213 |
+
with gr.Accordion("🔗 Enter Multiple URLs", open=False):
|
| 214 |
+
urls_input = gr.Textbox(label="Enter URLs (newline separated)", lines=4)
|
| 215 |
+
|
| 216 |
+
with gr.Row():
|
| 217 |
+
submit_button = gr.Button(" Generate Digest")
|
| 218 |
+
clear_button = gr.Button(" Clear")
|
| 219 |
+
|
| 220 |
+
with gr.Row():
|
| 221 |
+
column_0 = gr.Markdown()
|
| 222 |
+
column_1 = gr.Markdown()
|
| 223 |
+
column_2 = gr.Markdown()
|
| 224 |
+
column_3 = gr.Markdown()
|
| 225 |
+
column_4 = gr.Markdown()
|
| 226 |
+
|
| 227 |
+
submit_button.click(
|
| 228 |
+
fn=update_ui_with_columns,
|
| 229 |
+
inputs=[topic_input, uploaded_files, urls_input, sentiment_filter],
|
| 230 |
+
outputs=[
|
| 231 |
+
sentiment_filter,
|
| 232 |
+
column_0, column_1, column_2, column_3, column_4,
|
| 233 |
+
csv_output
|
| 234 |
+
]
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
latest_news_button.click(
|
| 238 |
+
fn=fetch_and_process_latest_news,
|
| 239 |
+
inputs=[sentiment_filter],
|
| 240 |
+
outputs=[
|
| 241 |
+
sentiment_filter,
|
| 242 |
+
column_0, column_1, column_2, column_3, column_4,
|
| 243 |
+
csv_output
|
| 244 |
+
]
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
clear_button.click(
|
| 248 |
+
fn=clear_interface,
|
| 249 |
+
inputs=[],
|
| 250 |
+
outputs=[
|
| 251 |
+
topic_input, # 1
|
| 252 |
+
sentiment_filter, # 2
|
| 253 |
+
uploaded_files, # 3
|
| 254 |
+
urls_input, # 4
|
| 255 |
+
column_0, # 5
|
| 256 |
+
column_1, # 6
|
| 257 |
+
column_2, # 7
|
| 258 |
+
column_3, # 8
|
| 259 |
+
column_4, # 9
|
| 260 |
+
csv_output # 10
|
| 261 |
+
]
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
if __name__ == "__main__":
|
| 267 |
+
demo.launch()
|