Spaces:
Sleeping
Sleeping
File size: 36,220 Bytes
01d5a5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
"""Utility functions for the L2 model training and inference.
This module provides utilities for token counting, model preparation, data processing,
and other helper functions used across the L2 pipeline.
"""
from collections import defaultdict
from datetime import datetime
from enum import Enum
import json
import os
import sys
from datasets import DatasetDict, Dataset, load_dataset, load_from_disk
from datasets.builder import DatasetGenerationError
from peft import LoraConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
import tiktoken
import torch
import logging
from lpm_kernel.configs.logging import TRAIN_LOG_FILE
from lpm_kernel.L2.training_prompt import (
CONTEXT_PROMPT,
CONTEXT_COT_PROMPT,
JUDGE_PROMPT,
JUDGE_COT_PROMPT,
MEMORY_PROMPT,
MEMORY_COT_PROMPT,
)
# Add import for memory manager
from .memory_manager import get_memory_manager
import gc
import requests
# Initialize the logger
logger = logging.getLogger(__name__)
# Default chat templates for different model formats
DEFAULT_CHATML_CHAT_TEMPLATE = "{% for message in messages %}\n{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% if loop.last and add_generation_prompt %}{{'<|im_start|>assistant\n' }}{% endif %}{% endfor %}"
DEFAULT_ZEPHYR_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
def release_ollama_models_early():
"""Release Ollama models from memory as early as possible before model loading.
This function uses the Ollama API with keep_alive=0 parameter to properly unload models
and free up VRAM before loading the training model.
"""
try:
from lpm_kernel.api.services.user_llm_config_service import UserLLMConfigService
import json
logger.info("Early release of Ollama models to free up VRAM for training")
# Get current user LLM config to identify models to release
user_llm_config_service = UserLLMConfigService()
user_llm_config = user_llm_config_service.get_available_llm()
if not user_llm_config:
logger.warning("No user LLM configuration found. Skipping Ollama model release.")
return
# Track which models have been released
released_models = set()
def get_generate_url(base_endpoint):
"""Helper function to get the API endpoint for unloading models"""
if not base_endpoint:
return None
base_url = base_endpoint.rstrip("/")
# Convert to API base URL if needed (may be v1 format or direct ollama format)
if "/v1/" in base_url:
api_base = base_url.split("/v1/")[0]
return f"{api_base}/api/generate"
else:
# Check if this is a non-localhost Ollama instance
if "ollama" in base_url.lower():
if "localhost" in base_url or "127.0.0.1" in base_url:
return "http://localhost:11434/api/generate"
else:
# Extract the base URL and use it
parts = base_url.split("//")
if len(parts) > 1:
host = parts[1].split("/")[0]
return f"{parts[0]}//{host}/api/generate"
# Default ollama endpoint as fallback
return "http://localhost:11434/api/generate"
# Release chat model if using Ollama
if "ollama" in user_llm_config.chat_endpoint.lower() and user_llm_config.chat_model_name:
chat_model = user_llm_config.chat_model_name
generate_url = get_generate_url(user_llm_config.chat_endpoint)
if not generate_url:
logger.warning(f"Could not determine API endpoint for chat model: {chat_model}")
else:
logger.info(f"Releasing Ollama chat model: {chat_model} via {generate_url}")
try:
# Set up headers with API key if provided
headers = {
"Content-Type": "application/json"
}
if user_llm_config.chat_api_key:
headers["Authorization"] = f"Bearer {user_llm_config.chat_api_key}"
# Use the proper generate endpoint with keep_alive=0 to unload
payload = {
"model": chat_model,
"keep_alive": 0,
"prompt": " " # Minimal prompt needed for request
}
unload_response = requests.post(
generate_url,
headers=headers,
data=json.dumps(payload),
timeout=30 # Add timeout to prevent hanging
)
if unload_response.status_code < 300:
logger.info(f"✅ Successfully unloaded chat model: {chat_model}")
released_models.add(chat_model)
else:
logger.warning(f"Failed to unload model via API: {unload_response.status_code} - {unload_response.text}")
except Exception as e:
logger.warning(f"Failed to release chat model {chat_model}: {str(e)}")
# Release embedding model if different from chat model and using Ollama
if (user_llm_config.embedding_model_name and
"ollama" in user_llm_config.embedding_endpoint.lower() and
user_llm_config.embedding_model_name != user_llm_config.chat_model_name and
user_llm_config.embedding_model_name not in released_models):
embedding_model = user_llm_config.embedding_model_name
generate_url = get_generate_url(user_llm_config.embedding_endpoint)
if not generate_url:
logger.warning(f"Could not determine API endpoint for embedding model: {embedding_model}")
else:
logger.info(f"Releasing Ollama embedding model: {embedding_model} via {generate_url}")
try:
# Set up headers with API key if provided
headers = {
"Content-Type": "application/json"
}
if user_llm_config.embedding_api_key:
headers["Authorization"] = f"Bearer {user_llm_config.embedding_api_key}"
# Use the proper generate endpoint with keep_alive=0 to unload
payload = {
"model": embedding_model,
"keep_alive": 0,
"prompt": " " # Minimal prompt needed for request
}
unload_response = requests.post(
generate_url,
headers=headers,
data=json.dumps(payload),
timeout=30 # Add timeout to prevent hanging
)
if unload_response.status_code < 300:
logger.info(f"✅ Successfully unloaded embedding model: {embedding_model}")
released_models.add(embedding_model)
else:
logger.warning(f"Failed to unload model via API: {unload_response.status_code} - {unload_response.text}")
except Exception as e:
logger.warning(f"Failed to release embedding model {embedding_model}: {str(e)}")
# Final cleanup and verification
if torch.cuda.is_available():
torch.cuda.empty_cache()
memory_info = get_memory_manager().get_memory_info()
vram_used = memory_info.get('vram_used_gb', 0)
vram_total = memory_info.get('vram_total_gb', 1)
logger.info(f"VRAM after early model release: {vram_used:.2f}GB / {vram_total:.2f}GB ({vram_used/vram_total*100:.1f}%)")
if released_models:
logger.info(f"Early release completed for {len(released_models)} Ollama models: {', '.join(released_models)}")
else:
logger.info("No Ollama models were released early")
except Exception as e:
import traceback
logger.error(f"Error in early Ollama model release: {str(e)}")
logger.error(traceback.format_exc())
def count_tokens_from_string(string: str, encoding_name: str = "cl100k_base") -> int:
"""Returns the number of tokens in a text string using a specified encoding.
Args:
string: Text to tokenize.
encoding_name: The encoding name to use. Defaults to "cl100k_base".
Returns:
The number of tokens in the text.
"""
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(string))
return num_tokens
def truncate_string_by_tokens(
string: str, max_tokens: int, encoding_name: str = "cl100k_base"
) -> str:
"""Truncates a string to fit within a specified number of tokens.
Args:
string: Text to truncate.
max_tokens: Maximum number of tokens to keep.
encoding_name: The encoding name to use. Defaults to "cl100k_base".
Returns:
The truncated string.
"""
encoding = tiktoken.get_encoding(encoding_name)
tokens = encoding.encode(string)
if len(tokens) > max_tokens:
# Truncate the tokens to the maximum token limit
truncated_tokens = tokens[:max_tokens]
# Decode the truncated tokens back to a string
truncated_string = encoding.decode(truncated_tokens)
return truncated_string
return string
class ChatmlSpecialTokens(str, Enum):
"""Special tokens for ChatML format models."""
user = "<|im_start|>user"
assistant = "<|im_start|>assistant"
system = "<|im_start|>system"
eos_token = "<|im_end|>"
bos_token = "<s>"
pad_token = "<pad>"
@classmethod
def list(cls):
"""Returns a list of all special tokens."""
return [token.value for token in cls]
class ZephyrSpecialTokens(str, Enum):
"""Special tokens for Zephyr format models."""
user = "<|user|>"
assistant = "<|assistant|>"
system = "<|system|>"
eos_token = "</s>"
bos_token = "<s>"
pad_token = "<pad>"
@classmethod
def list(cls):
"""Returns a list of all special tokens."""
return [token.value for token in cls]
def create_and_prepare_model(args, data_args, training_args, model_kwargs=None):
"""Creates and prepares a model for training.
Args:
args: Model arguments containing model configuration.
data_args: Data arguments for training.
training_args: Training configuration arguments.
model_kwargs: Additional kwargs to pass to the model loading function.
Returns:
Tuple of (model, tokenizer, peft_config) ready for training.
"""
# Get the memory manager for adaptive loading
memory_manager = get_memory_manager()
model_kwargs = model_kwargs or {}
# Release Ollama models early before we load any models
if torch.cuda.is_available() and args.use_cuda:
release_ollama_models_early()
# Force cleanup memory after releasing Ollama models
memory_manager.cleanup_memory(force=True)
if args.use_unsloth:
from unsloth import FastLanguageModel
bnb_config = None
if (
torch.distributed.is_available()
and torch.distributed.is_initialized()
and torch.distributed.get_world_size() > 1
and args.use_unsloth
):
raise NotImplementedError("Unsloth is not supported in distributed training")
# Clean up memory before loading model
memory_manager.cleanup_memory()
# Check for CUDA availability and use it if enabled
cuda_available = torch.cuda.is_available()
use_cuda_requested = args.use_cuda
device = "cpu"
# Always enable memory-adaptive loading by default (device_map="auto"), unless CUDA is off
if cuda_available and use_cuda_requested:
device = "cuda"
model_kwargs["device_map"] = "auto"
else:
if use_cuda_requested and not cuda_available:
logger.warning("⚠️ CUDA was requested but is not available on this system. Falling back to CPU.")
elif cuda_available and not use_cuda_requested:
logger.info("ℹ️ CUDA is available but not requested. Using CPU as specified.")
else:
logger.info("ℹ️ CUDA is not available. Using CPU for training.")
# Explicitly remove device_map to force CPU-only
if "device_map" in model_kwargs:
model_kwargs.pop("device_map")
logger.info("Using CPU for model training and inference.")
# Configure quantization based on available memory
# Use model_kwargs quantization_config if provided, otherwise build it
if "quantization_config" not in model_kwargs:
if args.use_4bit_quantization:
compute_dtype = getattr(torch, args.bnb_4bit_compute_dtype)
quant_storage_dtype = getattr(torch, args.bnb_4bit_quant_storage_dtype)
bnb_config = BitsAndBytesConfig(
load_in_4bit=args.use_4bit_quantization,
bnb_4bit_quant_type=args.bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=args.use_nested_quant,
bnb_4bit_quant_storage=quant_storage_dtype,
)
model_kwargs["quantization_config"] = bnb_config
if compute_dtype == torch.float16 and args.use_4bit_quantization:
major, _ = torch.cuda.get_device_capability() if torch.cuda.is_available() else (0, 0)
if major >= 8:
logger.info("Your GPU supports bfloat16, you can accelerate training with the argument --bf16")
elif args.use_8bit_quantization:
bnb_config = BitsAndBytesConfig(load_in_8bit=args.use_8bit_quantization)
model_kwargs["quantization_config"] = bnb_config
# Load model with memory-adaptive approach
model = None
tokenizer = None
peft_config = None
try:
# First try loading the model with the requested configuration
if args.use_unsloth:
# Load model with Unsloth using memory manager
unsloth_kwargs = {
"model_name": args.model_name_or_path,
"max_seq_length": data_args.max_seq_length,
"dtype": None,
"load_in_4bit": args.use_4bit_quantization,
"load_in_8bit": args.use_8bit_quantization,
"trust_remote_code": True,
"device_map": model_kwargs.get("device_map", "auto") if args.use_cuda and torch.cuda.is_available() else None,
}
logger.info(f"Loading model with Unsloth with parameters: {unsloth_kwargs}")
model, _ = FastLanguageModel.from_pretrained(**unsloth_kwargs)
else:
# Load model with standard approach
load_kwargs = {
"trust_remote_code": True,
}
# Use any provided model_kwargs
load_kwargs.update(model_kwargs)
if "attn_implementation" not in load_kwargs and args.use_flash_attn:
load_kwargs["attn_implementation"] = "flash_attention_2"
# Set default device_map if not specified
if "device_map" not in load_kwargs and args.use_cuda and torch.cuda.is_available():
load_kwargs["device_map"] = "auto"
logger.info(f"Loading model with parameters: {load_kwargs}")
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, **load_kwargs)
except (RuntimeError, torch.cuda.OutOfMemoryError, MemoryError) as e:
# If standard approaches fail, try progressive fallbacks
logger.warning(f"Failed to load model with standard settings: {str(e)}")
logger.info("Falling back to adaptive model loading...")
# First cleanup to ensure maximum memory available
memory_manager.cleanup_memory(force=True)
try:
# Try with simpler configuration - float16 instead of bfloat16
logger.info("Attempting to load with float16 precision...")
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
device_map="auto" if torch.cuda.is_available() and args.use_cuda else None,
torch_dtype=torch.float16 if torch.cuda.is_available() and args.use_cuda else None,
trust_remote_code=True
)
except (RuntimeError, torch.cuda.OutOfMemoryError, MemoryError) as e:
# If that fails too, try even more conservative loading
logger.warning(f"Float16 loading failed: {str(e)}")
memory_manager.cleanup_memory(force=True)
try:
# Try with CPU offloading and gradual loading
logger.info("Attempting most conservative loading with CPU offloading...")
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
device_map="auto",
offload_folder="offload_folder",
offload_state_dict=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
except Exception as e:
# If all fallbacks fail, it's a fatal error
logger.error(f"All adaptive loading approaches failed: {str(e)}")
raise RuntimeError(f"Failed to load model with any memory adaptation technique: {str(e)}")
# If still not loaded, it's a fatal error
if model is None:
raise RuntimeError("Failed to load model with any memory adaptation technique")
# Apply memory optimization to model
model = memory_manager.optimize_model_for_training(model)
# Configure LoRA if requested
if args.use_peft_lora and not args.use_unsloth:
peft_config = LoraConfig(
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
r=args.lora_r,
bias="none",
task_type="CAUSAL_LM",
target_modules=args.lora_target_modules.split(",")
if args.lora_target_modules != "all-linear"
else args.lora_target_modules,
)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, trust_remote_code=True, padding_side="right"
)
# Apply Unsloth LoRA if requested and check memory status
if args.use_unsloth:
try:
# Clean up first
memory_manager.cleanup_memory()
# Apply LoRA with memory monitoring
model = FastLanguageModel.get_peft_model(
model,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
r=args.lora_r,
target_modules=args.lora_target_modules.split(",")
if args.lora_target_modules != "all-linear"
else args.lora_target_modules,
use_gradient_checkpointing=training_args.gradient_checkpointing,
random_state=training_args.seed,
max_seq_length=data_args.max_seq_length,
)
except Exception as e:
logger.error(f"Failed to apply Unsloth LoRA: {str(e)}")
# If Unsloth fails, we might need to fall back to standard training
if args.use_cuda and torch.cuda.is_available():
logger.warning("Low VRAM detected, moving model to CPU")
model = model.cpu()
torch.cuda.empty_cache()
# Final memory status check
memory_info = memory_manager.get_memory_info()
logger.info(f"Memory after model preparation: RAM: {memory_info['ram_used_gb']:.2f}GB / {memory_info['ram_total_gb']:.2f}GB")
if torch.cuda.is_available():
logger.info(f"VRAM: {memory_info.get('vram_used_gb', 0):.2f}GB / {memory_info.get('vram_total_gb', 0):.2f}GB")
return model, peft_config, tokenizer
def create_chat_data(data_args, tokenizer):
"""Creates and preprocesses chat data for training.
Args:
data_args: Arguments for dataset configuration.
tokenizer: Tokenizer for text processing.
Returns:
Processed dataset ready for training.
"""
def preprocess(sample, user_name='user', is_cot=False):
"""Preprocesses a chat sample.
Args:
sample: The input sample to process.
user_name: Name of the user. Defaults to 'user'.
is_cot: Whether to use chain-of-thought prompts. Defaults to False.
Returns:
Processed chat sample.
"""
if sample.get('assistant') is None and sample.get('enhanced_request') is not None:
user_message = f"{user_name}'s request is: " + sample['user_request']
messages = [
{"role": "system", "content": CONTEXT_COT_PROMPT.format(user_name=user_name) if is_cot else CONTEXT_PROMPT.format(user_name=user_name)},
{"role": "user", "content": user_message},
{"role": "assistant", "content": sample['enhanced_request'].strip('\n')},
]
return [{"content": tokenizer.apply_chat_template(messages, tokenize=False)}]
if sample.get('assistant') is None and sample.get('user_feedback') is not None:
user_message = f"{user_name}'s request is: " + sample['user_request'] + "\n" + "Expert's response is: " + sample['expert_response']
messages = [
{"role": "system", "content": JUDGE_COT_PROMPT.format(user_name=user_name) if is_cot else JUDGE_PROMPT.format(user_name=user_name)},
{"role": "user", "content": user_message},
{"role": "assistant", "content": sample['user_feedback'].strip('\n')},
]
return [{"content": tokenizer.apply_chat_template(messages, tokenize=False)}]
if sample.get('assistant') is None:
return []
sample['assistant'] = sample['assistant'].strip('\n')
messages = [
{"role": "system", "content": MEMORY_COT_PROMPT.format(user_name=user_name) if is_cot else MEMORY_PROMPT.format(user_name=user_name)},
{"role": "user", "content": sample['user']},
{"role": "assistant", "content": sample['assistant']},
]
if 'None' in sample['assistant']:
return []
return [{"content": tokenizer.apply_chat_template(messages, tokenize=False)}]
dataset = load_dataset("json", data_files=data_args.dataset_name, split="train")
res_dataset = []
for case in dataset:
res_dataset.extend(preprocess(case, data_args.user_name, data_args.is_cot))
res = Dataset.from_list(res_dataset)
print(f"**************Dataset contains {res.num_rows} elements.**************")
return res
def formatting_prompts_func(example):
"""Format examples for training.
Args:
example: Example to format.
Returns:
Formatted text.
"""
out_text_list = []
for i in range(len(example["content"])):
out_text_list.append(example["content"][i])
return out_text_list
# Improved logging setup
def setup_logger(log_path, logger_name="download_logger"):
"""Setup a logger with file and console handlers."""
# Create logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
# Remove any existing handlers to avoid duplicates
if logger.handlers:
for handler in logger.handlers:
logger.removeHandler(handler)
# Create file handler
file_handler = logging.FileHandler(log_path)
file_handler.setLevel(logging.INFO)
# Create console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
# Create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
# Add the handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
def save_hf_model(model_name=None, log_file_path=None) -> str:
"""Saves a Hugging Face model locally.
Args:
model_name: Name of the model to save. If None, will attempt to get from config.
log_file_path: Path to save download logs. If None, uses default path.
Returns:
Path to the saved model.
"""
# If log_file_path is None or empty, use default path
if not log_file_path:
log_file_path = TRAIN_LOG_FILE
# Setup logging
logger = setup_logger(log_file_path)
# If no model name provided, attempt to get from training configuration
if not model_name:
try:
from lpm_kernel.configs.config import Config
config = Config()
model_name = config.get("training", {}).get("model_name")
if not model_name:
logger.warning("No model name provided and none found in config. Using Qwen2.5-0.5B-Instruct as fallback.")
model_name = "Qwen2.5-0.5B-Instruct"
except Exception as e:
logger.warning(f"Failed to get model name from config: {str(e)}. Using Qwen2.5-0.5B-Instruct as fallback.")
model_name = "Qwen2.5-0.5B-Instruct"
base_dir = os.path.join(os.getcwd(), "resources/L2/base_models")
# Normalize model name and check for path traversal attempts
normalized_model_name = os.path.normpath(model_name)
if ".." in normalized_model_name or normalized_model_name.startswith("/"):
raise ValueError("Invalid model name - potential path traversal attempt")
# Prepare save path
save_path = os.path.join(base_dir, normalized_model_name)
os.makedirs(save_path, exist_ok=True)
from huggingface_hub import list_repo_files, configure_http_backend, hf_hub_download
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor
import traceback
# Configure HTTP backend more simply
try:
configure_http_backend(timeout=100.0)
except Exception as e:
logger.warning(f"Failed to configure HTTP backend with timeout: {e}")
try:
configure_http_backend()
except Exception as e:
logger.warning(f"Failed to configure HTTP backend: {e}")
# Log download start
logger.info(f"Starting download of model: {model_name}")
logger.info(f"Will be saved to: {save_path}")
hf_model_name = f"Qwen/{model_name}"
try:
# Get list of files to download
files = list_repo_files(hf_model_name)
logger.info(f"Found {len(files)} files to download from {hf_model_name}")
def download_file_with_progress(filename):
"""Download a single file from the model repository"""
local_file_path = os.path.join(save_path, filename)
# Create directories if they don't exist
os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
# Check if file already exists and is not empty
if os.path.exists(local_file_path) and os.path.getsize(local_file_path) > 0:
logger.info(f"File already exists: {filename}")
return True
try:
# Build the download URL
url = f"https://huggingface.co/{hf_model_name}/resolve/main/{filename}"
# Get file size
response = requests.head(url)
total_size = int(response.headers.get('content-length', 0))
# If the size cannot be obtained, set a default value
if total_size == 0:
logger.info(f"Starting download of file: {filename} (Size unknown)")
else:
logger.info(f"Starting download of file: {filename} (Size: {total_size / 1024 / 1024:.2f} MB)")
# Create the file to write to
with open(local_file_path, 'wb') as f:
# Create a progress bar
progress_bar = tqdm(
total=total_size if total_size > 0 else None,
unit='iB',
unit_scale=True,
desc=f"Downloading {os.path.basename(filename)}",
disable=False
)
# Define progress callback
def progress_callback(current, total):
progress_bar.update(current - progress_bar.n)
# Log progress every ~1MB
if current % (1024 * 1024) < 8192:
if total and total > 0:
percent = current / total * 100
logger.info(f"File {filename}: Downloaded {current/1024/1024:.2f} MB / {total/1024/1024:.2f} MB ({percent:.2f}%)")
else:
logger.info(f"File {filename}: Downloaded {current/1024/1024:.2f} MB (total size unknown)")
# Download file with progress tracking
response = requests.get(url, stream=True)
if response.status_code == 200:
downloaded = 0
# Update total size if needed
actual_total = int(response.headers.get('content-length', 0))
if actual_total > 0 and (total_size == 0 or total_size != actual_total):
total_size = actual_total
logger.info(f"Updated file size for {filename}: {total_size / 1024 / 1024:.2f} MB")
progress_bar.total = total_size
progress_bar.refresh()
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
downloaded += len(chunk)
progress_callback(downloaded, total_size)
progress_bar.close()
logger.info(f"Completed download of file: {filename}")
return True
else:
logger.error(f"Failed to download {filename}: HTTP status {response.status_code}")
failed_files.append(filename)
return False
except Exception as e:
logger.error(f"Failed to download {filename}: {str(e)}")
failed_files.append(filename)
return False
# Keep track of failed files for potential retry
failed_files = []
# Use ThreadPoolExecutor for parallel downloads with controlled concurrency
max_workers = min(8, len(files)) # Limit concurrent downloads to avoid overloading
successful_downloads = 0
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Create a progress bar for overall download progress
with tqdm(total=len(files), desc="Downloading model files") as progress:
futures = [executor.submit(download_file_with_progress, file) for file in files]
for future in futures:
result = future.result()
if result:
successful_downloads += 1
progress.update(1)
# Report progress periodically
if progress.n % 5 == 0 or progress.n == len(files):
logger.info(f"Downloaded {progress.n}/{len(files)} files ({successful_downloads} successful)")
# Handle any failed downloads
if failed_files:
logger.warning(f"Failed to download {len(failed_files)} files. First few: {failed_files[:5]}")
# If most files failed, there might be an issue with the model repository
if len(failed_files) > len(files) * 0.5:
logger.error(f"More than 50% of files failed to download. There might be an issue with the model repository.")
raise RuntimeError("Too many files failed to download")
# If critical files failed (like model weights or config), warn specifically
critical_patterns = ['model.safetensors', 'config.json', 'tokenizer.json']
critical_failed = [f for f in failed_files if any(pattern in f for pattern in critical_patterns)]
if critical_failed:
logger.error(f"Failed to download critical files: {critical_failed}")
raise RuntimeError(f"Failed to download critical model files: {', '.join(critical_failed)}")
# Record the download completion information
try:
import glob
file_count = len(glob.glob(f"{save_path}/**/*", recursive=True))
logger.info(f"Model {model_name} downloaded with {file_count} files.")
except Exception:
logger.info(f"Download completed for model: {model_name}.")
except requests.RequestException:
try:
from modelscope.hub.snapshot_download import snapshot_download
snapshot_download(model_id=hf_model_name, local_dir=save_path)
except Exception as e:
logger.error(f"Error downloading model: {str(e)}")
raise
except KeyboardInterrupt:
logger.warning(f"Download interrupted by user for model: {model_name}")
# Clean up partial downloads
raise
except Exception as e:
logger.error(f"Error downloading model: {str(e)}")
logger.error(traceback.format_exc())
raise
return save_path
def format_timestr(utc_time_str):
"""Formats a UTC time string to a more readable format.
Args:
utc_time_str: UTC time string to format.
Returns:
Formatted time string.
"""
# Define the original time format
try:
# Parse the UTC time
utc_time = datetime.strptime(utc_time_str, "%Y-%m-%d %H:%M:%S%z")
# Convert to readable format
formatted_time = utc_time.strftime("%B %d, %Y at %I:%M %p")
return formatted_time
except ValueError:
# Handle invalid date format
return utc_time_str
if __name__ == "__main__":
if len(sys.argv) > 1:
save_hf_model(sys.argv[1])
else:
save_hf_model()
|