Spaces:
Sleeping
Sleeping
File size: 14,742 Bytes
01d5a5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import logging
from pathlib import Path
from dotenv import load_dotenv
from flask import Blueprint, jsonify, request
from flask_pydantic import validate
from lpm_kernel.api.common.responses import APIResponse
from lpm_kernel.configs.config import Config
from lpm_kernel.file_data.chunker import DocumentChunker
from lpm_kernel.file_data.document_service import document_service
from lpm_kernel.kernel.chunk_service import ChunkService
logger = logging.getLogger(__name__)
document_bp = Blueprint("documents", __name__, url_prefix="/api")
# Ensure .env file is loaded
load_dotenv()
@document_bp.route("/documents/list", methods=["GET"])
def list_documents():
"""
List all documents
Query Parameters:
include_l0 (bool): Whether to include L0 data (chunks and embeddings)
"""
try:
# get query params
include_l0 = request.args.get("include_l0", "").lower() == "true"
if include_l0:
documents = document_service.list_documents_with_l0()
return jsonify(APIResponse.success(data=documents))
else:
documents = document_service.list_documents()
return jsonify(
APIResponse.success(data=[doc.to_dict() for doc in documents])
)
except Exception as e:
logger.error(f"Error listing documents: {str(e)}", exc_info=True)
return jsonify(APIResponse.error(message=f"Error listing documents: {str(e)}"))
@document_bp.route("/documents/scan", methods=["POST"])
@validate()
def scan_documents():
"""Scan documents from configured directory and store them in database"""
try:
# 2. Get project root directory and construct the full path
config = Config.from_env()
relative_path = config.get("USER_RAW_CONTENT_DIR").lstrip("/")
project_root = Path(__file__).parent.parent.parent.parent.parent
full_path = project_root / relative_path
# 3. Scan and process files
processed_doc_dtos = document_service.scan_directory(
directory_path=str(full_path), recursive=True
)
logger.info(f"Scan completed. Processed {len(processed_doc_dtos)} documents")
# 4. Return processing results
return jsonify(
APIResponse.success(data=[doc_dto.dict() for doc_dto in processed_doc_dtos])
)
except Exception as e:
logger.error(f"Unexpected error in scan_documents: {str(e)}", exc_info=True)
return jsonify(
APIResponse.error(message=f"Unexpected error in scan_documents: {str(e)}")
)
@document_bp.route("/documents/analyze", methods=["POST"])
def analyze_documents():
"""Analyze all unanalyzed documents"""
try:
analyzed_doc_dtos = document_service.analyze_all_documents()
return jsonify(
APIResponse.success(
data={
"total": len(analyzed_doc_dtos),
"documents": [doc.dict() for doc in analyzed_doc_dtos],
}
)
)
except Exception as e:
logger.error(f"Error analyzing documents: {str(e)}", exc_info=True)
return jsonify(
APIResponse.error(message=f"Error analyzing documents: {str(e)}")
)
@document_bp.route("/documents/<int:document_id>/l0", methods=["GET"])
def get_document_l0(document_id: int):
"""Get document L0 data including chunks and embeddings"""
try:
l0_data = document_service.get_document_l0(document_id)
return jsonify(APIResponse.success(data=l0_data))
except Exception as e:
logger.error(f"Error getting document L0 data: {str(e)}", exc_info=True)
return jsonify(
APIResponse.error(message=f"Error getting document L0 data: {str(e)}")
)
@document_bp.route("/documents/<int:document_id>/chunks", methods=["GET"])
def get_document_chunks(document_id: int):
"""Get chunks for the specified document"""
try:
logger.info(f"Attempting to retrieve chunks for document_id: {document_id}")
chunks = document_service.get_document_chunks(document_id)
if not chunks:
logger.warning(f"No chunks found for document_id: {document_id}")
return jsonify(
APIResponse.error(message=f"No chunks found for document {document_id}")
)
return jsonify(
APIResponse.success(
data={
"document_id": document_id,
"total_chunks": len(chunks),
"chunks": chunks,
}
)
)
except Exception as e:
logger.error(
f"Error getting document chunks for document_id {document_id}: {str(e)}",
exc_info=True,
)
return jsonify(
APIResponse.error(
message=f"Error getting document chunks for document_id {document_id}: {str(e)}"
)
)
@document_bp.route("/documents/chunks/process", methods=["POST"])
def process_all_chunks():
"""Process chunks for all documents in batch"""
try:
config = Config.from_env()
chunker = DocumentChunker(
chunk_size=int(config.get("DOCUMENT_CHUNK_SIZE")),
overlap=int(config.get("DOCUMENT_CHUNK_OVERLAP")),
)
documents = document_service.list_documents()
processed, failed = 0, 0
chunk_service = ChunkService()
for doc in documents:
try:
if not doc.raw_content:
logger.warning(f"Document {doc.id} has no content, skipping...")
failed += 1
continue
# Split into chunks and save
chunks = chunker.split(doc.raw_content)
for chunk in chunks:
chunk.document_id = doc.id
chunk_service.save_chunk(chunk)
processed += 1
logger.info(
f"Document {doc.id} processed: {len(chunks)} chunks created"
)
except Exception as e:
logger.error(f"Failed to process document {doc.id}: {str(e)}")
failed += 1
return jsonify(
APIResponse.success(
data={
"total": len(documents),
"processed": processed,
"failed": failed,
}
)
)
except Exception as e:
logger.error(f"Chunk processing failed: {str(e)}")
return jsonify(APIResponse.error(message=f"Chunk processing failed: {str(e)}"))
@document_bp.route("/documents/<int:document_id>/chunk/embedding", methods=["POST"])
def process_document_embeddings(document_id: int):
"""Process embeddings for all chunks of the specified document"""
try:
# Call service to process embeddings
processed_chunks = document_service.generate_document_chunk_embeddings(
document_id
)
if not processed_chunks:
logger.warning(f"No chunks found for document {document_id}")
return jsonify(
APIResponse.error(message=f"No chunks found for document {document_id}")
)
return jsonify(
APIResponse.success(
data={
"document_id": document_id,
"total_chunks": len(processed_chunks),
"processed_chunks": len(
[c for c in processed_chunks if c.has_embedding]
),
}
)
)
except Exception as e:
logger.error(
f"Error processing embeddings for document {document_id}: {str(e)}",
exc_info=True,
)
return jsonify(
APIResponse.error(
message=f"Error processing embeddings for document {document_id}: {str(e)}"
)
)
@document_bp.route("/documents/<int:document_id>/chunk/embedding", methods=["GET"])
def get_document_embeddings(document_id: int):
"""Get embeddings status for all chunks of the specified document"""
try:
# Get query parameters, determine whether to return complete embedding vectors
include_vectors = request.args.get("include_vectors", "").lower() == "true"
chunks = document_service.get_document_chunks(document_id)
if not chunks:
return jsonify(
APIResponse.error(message=f"No chunks found for document {document_id}")
)
# Get embeddings from ChromaDB
chunk_embeddings = document_service.get_chunk_embeddings_by_document_id(
document_id
)
chunks_info = [
{
"id": chunk.id,
"content": chunk.content[:100] + "..."
if len(chunk.content) > 100
else chunk.content,
"has_embedding": chunk.has_embedding,
"embedding_length": len(chunk_embeddings.get(chunk.id, []))
if chunk_embeddings.get(chunk.id)
else 0,
"embedding_vector": chunk_embeddings.get(chunk.id)
if include_vectors
else None, # Decide whether to include vectors based on parameters
"tags": chunk.tags,
"topic": chunk.topic,
}
for chunk in chunks
]
return jsonify(
APIResponse.success(
data={
"document_id": document_id,
"total_chunks": len(chunks),
"chunks_with_embeddings": len(
[c for c in chunks if c.has_embedding]
),
"chunks": chunks_info,
}
)
)
except Exception as e:
logger.error(
f"Error getting embeddings for document {document_id}: {str(e)}",
exc_info=True,
)
return jsonify(
APIResponse.error(
message=f"Error getting embeddings for document {document_id}: {str(e)}"
)
)
@document_bp.route("/documents/<int:document_id>/embedding", methods=["POST"])
def process_document_embedding(document_id: int):
"""Process document-level embedding"""
try:
embedding = document_service.process_document_embedding(document_id)
if embedding is None:
return jsonify(
APIResponse.error(
message=f"Failed to process embedding for document {document_id}"
)
)
return jsonify(
APIResponse.success(
data={"document_id": document_id, "embedding_length": len(embedding)}
)
)
except ValueError as e:
logger.error(f"Document not found: {str(e)}")
return jsonify(APIResponse.error(message=f"Document not found: {str(e)}"))
except Exception as e:
logger.error(f"Error processing document embedding: {str(e)}", exc_info=True)
return jsonify(
APIResponse.error(message=f"Error processing document embedding: {str(e)}")
)
@document_bp.route("/documents/<int:document_id>/embedding", methods=["GET"])
def get_document_embedding(document_id: int):
"""Get document-level embedding"""
try:
# Get query parameters, determine whether to return complete embedding vector
include_vector = request.args.get("include_vector", "").lower() == "true"
embedding = document_service.get_document_embedding(document_id)
if embedding is None:
return jsonify(
APIResponse.error(
message=f"No embedding found for document {document_id}"
)
), 404
return jsonify(
APIResponse.success(
data={
"document_id": document_id,
"embedding_length": len(embedding),
"embedding_vector": embedding if include_vector else None,
}
)
)
except Exception as e:
logger.error(f"Error getting document embedding: {str(e)}", exc_info=True)
return jsonify(
APIResponse.error(message=f"Error getting document embedding: {str(e)}")
)
@document_bp.route("/documents/verify-embeddings", methods=["GET"])
def verify_document_embeddings():
"""Verify all document embeddings and return statistics"""
try:
verbose = request.args.get("verbose", "").lower() == "true"
results = document_service.verify_document_embeddings(verbose=verbose)
return jsonify(APIResponse.success(data=results))
except Exception as e:
logger.error(f"Error verifying document embeddings: {str(e)}", exc_info=True)
return jsonify(APIResponse.error(message=f"Error verifying document embeddings: {str(e)}"))
@document_bp.route("/documents/repair", methods=["POST"])
def repair_documents():
"""Repair documents with missing analysis and embeddings"""
try:
# First, fix missing document analysis (summaries and insights)
fixed_analysis_count = document_service.fix_missing_document_analysis()
# Get verification results after fixing analysis
verification_results = document_service.verify_document_embeddings(verbose=False)
# Process documents with missing embeddings
documents_fixed = 0
for doc in document_service._repository.list():
embedding = document_service.get_document_embedding(doc.id)
if doc.raw_content and embedding is None:
try:
document_service.process_document_embedding(doc.id)
# Also process chunk embeddings
document_service.generate_document_chunk_embeddings(doc.id)
documents_fixed += 1
except Exception as e:
logger.error(f"Error processing document {doc.id} embedding: {str(e)}")
# Get final verification results
final_results = document_service.verify_document_embeddings(verbose=False)
return jsonify(APIResponse.success(
data={
"analysis_fixed": fixed_analysis_count,
"embeddings_fixed": documents_fixed,
"initial_state": verification_results,
"final_state": final_results
}
))
except Exception as e:
logger.error(f"Error repairing documents: {str(e)}", exc_info=True)
return jsonify(APIResponse.error(message=f"Error repairing documents: {str(e)}"))
|