Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| # Initialize the sentiment analysis pipeline | |
| sentiment_pipeline = pipeline( | |
| "text-classification", | |
| model="hasanmustafa0503/SentimentModel", | |
| tokenizer="hasanmustafa0503/SentimentModel" | |
| ) | |
| # Function to classify sentiment of text | |
| def classify_sentiment(text): | |
| result = sentiment_pipeline(text) | |
| return result[0]['label'], result[0]['score'] | |
| # Define Gradio interface | |
| iface = gr.Interface( | |
| fn=classify_sentiment, # Function to call | |
| inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), # Text input box | |
| outputs=[gr.Label(), gr.Number()], # Label for sentiment and score | |
| title="Sentiment Analysis", # Title for the app | |
| description="Enter some text, and this tool will predict the sentiment as POSITIVE or NEGATIVE along with the confidence score.", # Description | |
| ) | |
| # Launch the app | |
| iface.launch() | |