Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import torch | |
| from model import SmolLMModule | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import yaml | |
| import glob | |
| # Load config | |
| with open("config_smollm2_135.yaml", "r") as file: | |
| config = yaml.safe_load(file) | |
| # Load tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer") | |
| tokenizer.pad_token = tokenizer.eos_token | |
| def get_available_checkpoints(): | |
| """Get list of available checkpoints and final model""" | |
| models = [] | |
| model_paths = {} | |
| # Get checkpoints | |
| checkpoints = glob.glob("checkpoints/*.ckpt") | |
| for ckpt in checkpoints: | |
| try: | |
| # Extract step number from the filename | |
| filename = os.path.basename(ckpt) | |
| # Handle the format 'model-step=step=X.ckpt' | |
| if "step=step=" in filename: | |
| step = int(filename.split("step=step=")[1].split(".")[0]) | |
| display_name = f"Checkpoint Step {step}" | |
| models.append(display_name) | |
| model_paths[display_name] = ckpt | |
| except (ValueError, IndexError) as e: | |
| print( | |
| f"Warning: Could not parse checkpoint filename: {filename}, Error: {e}" | |
| ) | |
| continue | |
| # Add final model if it exists | |
| final_model_path = "final_model" | |
| if os.path.exists(final_model_path): | |
| display_name = "Final Model" | |
| models.append(display_name) | |
| model_paths[display_name] = final_model_path | |
| # Sort checkpoints by step number (Final model will be at the end) | |
| def get_step_number(name): | |
| if name == "Final Model": | |
| return float("inf") | |
| try: | |
| return int(name.split("Step ")[-1]) | |
| except: | |
| return 0 | |
| models.sort(key=get_step_number) | |
| if not models: | |
| print( | |
| "Warning: No checkpoints or final model found in the following locations:" | |
| ) | |
| print("- Checkpoints directory:", os.path.abspath("checkpoints")) | |
| print("- Final model directory:", os.path.abspath("final_model")) | |
| else: | |
| print(f"Found {len(models)} models:") | |
| for model in models: | |
| print(f"- {model}: {model_paths[model]}") | |
| return models, model_paths | |
| def load_model_from_checkpoint(model_path): | |
| """Load model from checkpoint or final model directory""" | |
| if model_path == "final_model": | |
| # Load the final saved model | |
| model = SmolLMModule(config) | |
| model.model = AutoModelForCausalLM.from_pretrained(model_path) | |
| else: | |
| # Load from checkpoint | |
| model = SmolLMModule.load_from_checkpoint(model_path, config=config) | |
| model.eval() # Set to evaluation mode | |
| return model | |
| def generate_text(prompt, model_choice, max_length=100, temperature=0.7, top_p=0.9): | |
| """Generate text based on prompt using selected model""" | |
| # Check if model is selected | |
| if not model_choice: | |
| return "Please select a model checkpoint!" | |
| if not prompt: | |
| return "Please enter a prompt!" | |
| try: | |
| # Get model path from the mapping | |
| _, model_paths = get_available_checkpoints() | |
| model_path = model_paths.get(model_choice) | |
| if not model_path or not os.path.exists(model_path): | |
| return f"Model {model_choice} not found!" | |
| # Load model | |
| model = load_model_from_checkpoint(model_path) | |
| # Move model to GPU if available | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = model.to(device) | |
| # Tokenize input | |
| inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) | |
| # Move inputs to same device as model | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| # Generate | |
| with torch.no_grad(): | |
| outputs = model.model.generate( | |
| inputs["input_ids"], | |
| max_length=max_length, | |
| temperature=temperature, | |
| top_p=top_p, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| ) | |
| # Decode and return generated text | |
| generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return generated_text | |
| except Exception as e: | |
| return f"Error during generation: {str(e)}" | |
| # Get available models | |
| display_names, _ = get_available_checkpoints() | |
| # Create Gradio interface | |
| with gr.Blocks(title="SmolLM2 Inference") as demo: | |
| gr.Markdown("# SmolLM2 Text Generation") | |
| if not display_names: | |
| gr.Markdown("⚠️ No models found! Please train the model first.") | |
| else: | |
| gr.Markdown( | |
| f"Found {len(display_names)} models/checkpoints. Select one and enter a prompt to generate text." | |
| ) | |
| gr.Markdown("Available models: " + ", ".join(display_names)) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_dropdown = gr.Dropdown( | |
| choices=display_names, | |
| label="Select Model", | |
| value=display_names[-1] if display_names else None, | |
| interactive=True, | |
| ) | |
| prompt = gr.Textbox( | |
| lines=3, placeholder="Enter your prompt here...", label="Input Prompt" | |
| ) | |
| max_length = gr.Slider( | |
| minimum=10, maximum=500, value=100, step=10, label="Max Length" | |
| ) | |
| temperature = gr.Slider( | |
| minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature" | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p" | |
| ) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Column(): | |
| output = gr.Textbox(lines=8, label="Generated Text") | |
| generate_btn.click( | |
| fn=generate_text, | |
| inputs=[prompt, model_dropdown, max_length, temperature, top_p], | |
| outputs=output, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |