Spaces:
Sleeping
Sleeping
File size: 50,238 Bytes
2d51bc9 a48c609 2d51bc9 b70f738 2d51bc9 a48c609 2d51bc9 b895059 b73051f 2d51bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 |
# General
import os
import kagglehub
import pandas as pd
import json
from typing import Literal
from datasets import load_dataset
import random
#Markdown
from IPython.display import Markdown, display, Image
# Image
from PIL import Image
# langchain for llms
from langchain_groq import ChatGroq
# Langchain
from langchain.prompts import PromptTemplate, ChatPromptTemplate
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.messages import HumanMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
# Hugging Face
from transformers import AutoModelForImageClassification, AutoProcessor
from langchain_huggingface import HuggingFaceEmbeddings
# Extra libraries
from pydantic import BaseModel, Field, model_validator
# Advanced RAG
from langchain_core.documents import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
# ## APIs
os.environ["SERPER_API_KEY"] = os.getenv("SERPER_API_KEY")
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_TOKEN"]
# ## Setup LLM (Llama 3.3 via Groq)
# Note: Model 3.2 70b is not available on Groq any more
# We will be using 3.3 from Now on
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
#model_3_2 = 'llama-3.2-11b-text-preview' => his model has been removed from Groq platform
model_3_2_small = 'llama-3.1-8b-instant' # Smaller Model 3 Billion parameters if you need speed
model_3_3 ='llama-3.3-70b-versatile' # Very Large and Versatile Model with 70 Billion parameters
llm = ChatGroq(
model= model_3_3, #
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# groq_api_key=os.getenv("GROQ_API_KEY")
# other params...
)
# A test message
# new text:
response = llm.invoke("hi, Please generate 10 unique Dutch names for both male and female?")
response
display(Markdown(response.content))
# # First Agent: Chatbot Agent
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
class ChatState(TypedDict):
# Messages have the type "list". The `add_messages` function
# in the annotation defines how this state key should be updated
# (in this case, it appends messages to the list, rather than overwriting them)
messages: Annotated[list, add_messages]
chat_graph = StateGraph(ChatState)
def chatbot_agent(state: ChatState):
return {"messages": [llm.invoke(state["messages"])]}
# The first argument is the unique node name
# The second argument is the function or object that will be called whenever
# the node is used.
chat_graph.add_node("chatbot_agent", chatbot_agent)
chat_graph.add_edge(START, "chatbot_agent")
chat_graph.add_edge("chatbot_agent", END)
# Finally, we'll want to be able to run our graph. To do so, call "compile()"
# We basically now give our AI Agent
graph_app = chat_graph.compile()
# Persistent state to maintain conversation history
persistent_state = {"messages": []} # Start with an empty message list
from IPython.display import Image, display
display(Image(graph_app.get_graph(xray=True).draw_mermaid_png()))
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from IPython.display import display, Markdown
class ChatState(TypedDict):
messages: Annotated[list, add_messages]
chat_graph = StateGraph(ChatState)
def chatbot_agent(state: ChatState):
# Assuming `llm` is your language model that can handle the conversation history
return {"messages": [llm.invoke(state["messages"])]}
chat_graph.add_node("chatbot_agent", chatbot_agent)
chat_graph.add_edge(START, "chatbot_agent")
chat_graph.add_edge("chatbot_agent", END)
graph_app = chat_graph.compile()
# Persistent state to maintain conversation history
persistent_state = {"messages": []} # Start with an empty message list
def stream_graph_updates(user_input: str):
global persistent_state
# Append the user's message to the persistent state
persistent_state["messages"].append(("user", user_input))
is_finished = False
for event in graph_app.stream(persistent_state):
for value in event.values():
last_msg = value["messages"][-1]
display(Markdown("Assistant: " + last_msg.content))
# Append the assistant's response to the persistent state
persistent_state["messages"].append(("assistant", last_msg.content))
finish_reason = last_msg.response_metadata.get("finish_reason")
if finish_reason == "stop":
is_finished = True
break
if is_finished:
break
while True:
try:
user_input = input('User:')
if user_input.lower() in ["quit", "exit", "q"]:
print("Thank you and Goodbye!")
break
stream_graph_updates(user_input)
except Exception as e:
print(f"An error occurred: {e}")
break
# # Second Agent: Add Search to Chatbot to make it Stronger
from langchain_community.tools import GoogleSerperResults
from typing import List, Annotated
from langchain_core.messages import BaseMessage
from langgraph.prebuilt import ToolNode, create_react_agent
import operator
import functools
class ChatState(TypedDict):
# Messages have the type "list". The `add_messages` function
# in the annotation defines how this state key should be updated
# (in this case, it appends messages to the list, rather than overwriting them)
messages: Annotated[list, add_messages]
def agent_node(state, agent, name):
result = agent.invoke(state)
return {
"messages": [HumanMessage(content=result["messages"][-1].content, name=name)]
}
class SearchState(TypedDict):
# A message is added after each team member finishes
messages: Annotated[List[BaseMessage], operator.add]
# Search Tool
serper_tool = GoogleSerperResults(
num_results=5,
# how many Google results to return
)
search_agent = create_react_agent(llm, tools=[serper_tool])
search_node = functools.partial(agent_node,
agent=search_agent,
name="search_agent")
# The first argument is the unique node name
# The second argument is the function or object that will be called whenever
# the node is used.
search_graph = StateGraph(SearchState)
search_graph.add_node("search_agent", search_node)
search_graph.add_edge(START, "search_agent")
search_graph.add_edge("search_agent", END)
# Finally, we'll want to be able to run our graph. To do so, call "compile()"
# We basically now give our AI Agent
search_app = search_graph.compile()
from IPython.display import Image, display
display(Image(search_app.get_graph(xray=True).draw_mermaid_png()))
from langchain_community.tools import GoogleSerperResults
from typing import List, Annotated
from langchain_core.messages import BaseMessage, HumanMessage
from langgraph.prebuilt import ToolNode, create_react_agent
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from IPython.display import display, Markdown
import operator
import functools
class ChatState(TypedDict):
messages: Annotated[List[BaseMessage], operator.add]
def agent_node(state, agent, name):
result = agent.invoke(state)
return {
"messages": [HumanMessage(content=result["messages"][-1].content, name=name)]
}
class SearchState(TypedDict):
messages: Annotated[List[BaseMessage], operator.add]
# Search Tool
serper_tool = GoogleSerperResults(num_results=5) # how many Google results to return
search_agent = create_react_agent(llm, tools=[serper_tool])
search_node = functools.partial(agent_node, agent=search_agent, name="search_agent")
# Create the search graph
search_graph = StateGraph(SearchState)
search_graph.add_node("search_agent", search_node)
search_graph.add_edge(START, "search_agent")
search_graph.add_edge("search_agent", END)
# Compile the search graph
search_app = search_graph.compile()
# Persistent state to maintain conversation history
persistent_state = {"messages": []} # Start with an empty message list
def stream_graph_updates(user_input: str):
global persistent_state
# Append the user's message to the persistent state
persistent_state["messages"].append(HumanMessage(content=user_input))
# Display "Searching the Web Now..." message
display(Markdown("**Assistant:** Searching the Web Now..."))
is_finished = False
for event in search_app.stream(persistent_state):
for value in event.values():
last_msg = value["messages"][-1]
display(Markdown("**Assistant:** " + last_msg.content))
# Append the assistant's response to the persistent state
persistent_state["messages"].append(last_msg)
finish_reason = last_msg.response_metadata.get("finish_reason")
if finish_reason == "stop":
is_finished = True
break
if is_finished:
break
while True:
try:
user_input = input('User:')
if user_input.lower() in ["quit", "exit", "q"]:
print("Thank you and Goodbye!")
break
stream_graph_updates(user_input)
except Exception as e:
print(f"An error occurred: {e}")
break
# # Step 1: Medical Database Preparation
# This step involves preparing and enhancing patient data to be used throughout the simulation.
# ## 1.1 Load Dataset
# ### 1.1.1 Disease Symptoms and Patient Profile Dataset
# Ensure you have downloaded it and placed it in your project directory.
# - https://www.kaggle.com/datasets/uom190346a/disease-symptoms-and-patient-profile-dataset
# Download latest version
path = kagglehub.dataset_download("uom190346a/disease-symptoms-and-patient-profile-dataset")
print("Path to dataset files:", path)
patient_df = pd.read_csv(path+'/Disease_symptom_and_patient_profile_dataset.csv')
patient_df.shape
patient_df.head()
# Calculate the counts of each gender
female_count = patient_df[patient_df['Gender'] == 'Female'].shape[0]
male_count = patient_df[patient_df['Gender'] == 'Male'].shape[0]
# Calculate the ratio
ratio = female_count / male_count
print(f"The ratio of Female to Male is {ratio}:1")
patient_df['Disease'].value_counts().head(20)
# **prepare_medical_dataset Code in One Plalce**
def prepare_medical_dataset(path, file_name):
patient_df = pd.read_csv(path+file_name)
return patient_df
path = kagglehub.dataset_download("uom190346a/disease-symptoms-and-patient-profile-dataset")
file_name = '/Disease_symptom_and_patient_profile_dataset.csv'
patient_df = prepare_medical_dataset(path, file_name)
# ### 1.1.2 Chest X-Ray Images (Pneumonia)
#
# - https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
# - https://huggingface.co/datasets/keremberke/chest-xray-classification
#
#
#from datasets import load_dataset
#patient_x_ray_path = "keremberke/chest-xray-classification"
#x_ray_ds = load_dataset(patient_x_ray_path, name="full")
from datasets import load_dataset
x_ray_ds = load_dataset("keremberke/chest-xray-classification", name="full")
random_index = random.randint(0, x_ray_ds['train'].shape[0] - 1)
patient_x_ray = random_row = x_ray_ds['train'][random_index]['image']
from datasets import load_dataset
x_ray_ds = load_dataset("keremberke/chest-xray-classification", name="full")
x_ray_ds['train'].shape[0]
# Assuming x_ray_ds['train'] is a dataset where we want to pick a random row
import random
random_index = random.randint(0, x_ray_ds['train'].shape[0] - 1)
patient_x_ray = x_ray_ds['train'][random_index]['image']
patient_x_ray
type(patient_x_ray)
#!pip install --upgrade accelerate==0.31.0
#!pip install --upgrade huggingface-hub>=0.23.0
from transformers import pipeline
# Model in Hugging Face: https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
# vit-xray-pneumonia-classification
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
patient_x_ray_results = classifier(patient_x_ray)
patient_x_ray_results
# Find the label with the highest score
patient_x_ray_label = max(patient_x_ray_results, key=lambda x: x['score'])['label']
print(patient_x_ray_label)
# Model in Hugging Face: https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
# vit-xray-pneumonia-classification
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
patient_x_ray_results = classifier(patient_x_ray)
# Find the label with the highest score and its score
highest = max(patient_x_ray_results, key=lambda x: x['score'])
highest_score_label = highest['label']
highest_score = highest['score'] * 100 # Convert to percentage
# Choose the correct verb based on the label
verb = "is" if highest_score_label == "NORMAL" else "has"
# Print the result dynamically
print(f"Patient {verb} {highest_score_label} with Probability of ca. {highest_score:.0f}%")
# ## 1.2 Generate Synthetic Data with LLMs
# Generate culturally appropriate Dutch names and unique alphanumeric IDs for each patient.
# ### 1.2.1 Generate Random Names and IDs for Patience
# This Code Goes Slower because of Llama 3.3 70b being very big and slow LLM
# comparing to llama 3.2 11b
# Switch to model_3_2_smal when running this code
# === Step 1: Define Response Schemas ===
# Define the structure of the expected JSON output.
# ResponseSchema for First_Name
first_name_schema = ResponseSchema(
name="First_Name",
description="The first name of the patient."
)
# ResponseSchema for Last_Name
last_name_schema = ResponseSchema(
name="Last_Name",
description="The last name of the patient."
)
# ResponseSchema for Patient_ID
patient_id_schema = ResponseSchema(
name="Patient_ID",
description="A unique 13-character alphanumeric patient identifier."
)
# ResponseSchema for Patient_ID
gender_schema = ResponseSchema(
name="G_Gender",
description="Indicate the first name you generate belong which Gender: Male or Female"
)
# Aggregate all response schemas
response_schemas = [
first_name_schema,
last_name_schema,
patient_id_schema,
gender_schema
]
# === Step 2: Set Up the Output Parser ===
# Initialize the StructuredOutputParser with the defined response schemas.
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
# Get the format instructions to include in the prompt
format_instructions = output_parser.get_format_instructions()
# === Step 3: Craft the Prompt ===
# Create a prompt that instructs the LLM to generate only the structured JSON data.
# Define the prompt template using ChatPromptTemplate
prompt_template = ChatPromptTemplate.from_template("""
you MUST Generate a list of {n} Dutch names along with a unique 13-character alphanumeric Patient_ID for each gender provided.
Always Use {genders} to generate a First_Name which belong to the right Gender, two category is possible: 'Male' or 'Female'.
Ensure the names are culturally appropriate for the Netherlands.
Generate unique names, no repetitions, and ensure diversity.
The ratio of Female to Male is {ratio}:1
{format_instructions}
Genders:
{genders}
**IMPORTANT:** Do not include any explanations, code, or additional text.
you MUST ALWAYS generate Dutch names and Patient_ID according {format_instructions}
and NEVER return empty values.
YOU MUST Provide only the JSON array as specified.
JSON array Should have exactly {n} rows and 3 columns
""")
# Determine the number of patients
n_patients = len(patient_df)
#n_patients = 120
# Calculate the counts of each gender
female_count = patient_df[patient_df['Gender'] == 'Female'].shape[0]
male_count = patient_df[patient_df['Gender'] == 'Male'].shape[0]
# Calculate the ratio
ratio = female_count / male_count
# Prepare the list of genders
genders = patient_df['Gender'].tolist()
# === Step 6: Generate the Prompt ===
# Format the prompt with the number of patients and their genders.
formatted_prompt = prompt_template.format(
n=n_patients,
ratio = ratio,
genders=', '.join(genders),
format_instructions=format_instructions
)
# Invoke the model with s Smaller Llama Model for Speed
model_3_2_small = 'llama-3.1-8b-instant' # if you need speed
llm = ChatGroq(
model= model_3_2_small, #
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2
)
output = llm.invoke(formatted_prompt, timeout=1000)
display(Markdown(output.content))
output_parser = JsonOutputParser()
json_output = output_parser.invoke(output)
json_output
all_patients = []
generated_patients = pd.DataFrame(json_output)
generated_patients.head(5)
generated_patients.shape
# Adjusted LLM parameters (if supported)
llm.temperature = 0.9 # Increases randomness
all_patients_name_id = pd.DataFrame()
output_parser = JsonOutputParser()
while all_patients_name_id.shape[0] < n_patients:
output = llm.invoke(formatted_prompt)
json_output = output_parser.invoke(output)
generated_patients = pd.DataFrame(json_output)
all_patients_name_id = pd.concat([generated_patients, all_patients_name_id], axis = 0)
print(f"len all_patients_name_id: {len(all_patients_name_id)}")
all_patients_name_id = all_patients_name_id.drop_duplicates()
print(f"len all_patients_name_id after droping duplicates: {len(all_patients_name_id)}")
all_patients_name_id.rename(columns = {"G_Gender": "Gender"}, inplace= True)
all_patients_name_id.head(10)
gender_counts = patient_df['Gender'].value_counts()
gender_counts
all_patients_name_id['Gender'].value_counts()
# Step 1: Count the number of males and females in patient_df
gender_counts = patient_df['Gender'].value_counts()
# Step 2: Select the required number of unique males and females from all_patients_name_id
unique_males = all_patients_name_id[all_patients_name_id['Gender'] == 'Male'].drop_duplicates().head(gender_counts['Male'])
unique_females = all_patients_name_id[all_patients_name_id['Gender'] == 'Female'].drop_duplicates().head(gender_counts['Female'])
patient_male = patient_df[patient_df['Gender'] == 'Male'].reset_index(drop=True)
patient_female = patient_df[patient_df['Gender'] == 'Female'].reset_index(drop=True)
updated_male_patients = pd.concat([patient_male.reset_index(drop=True),
unique_males[0:patient_male.shape[0]].reset_index(drop=True)],
axis = 1)
updated_female_patients = pd.concat([patient_female.reset_index(drop=True),
unique_females[0:patient_female.shape[0]].reset_index(drop=True)],
axis = 1)
# Step 3: Concatenate patient_df with the selected rows from all_patients_name_id
updated_patient_df = pd.concat([updated_male_patients, updated_female_patients], axis = 0)
updated_patient_df.shape[0]
# Display the final concatenated dataframe
updated_patient_df
updated_patient_df = updated_patient_df.loc[:, ~updated_patient_df.columns.duplicated()]
updated_patient_df
updated_patient_df['Gender'].value_counts()
# #### 1.2.1.1 Select a Random Patient
# Pick a Random Patient: A female between 20 and 29 and with Pneumonia as Positive so that later we can check X-Ray Agent
mask = (updated_patient_df['Gender'] == 'Female') & \
(updated_patient_df["Age"].between(20, 29)) & \
(updated_patient_df['Difficulty Breathing'] == 'Yes') & \
(updated_patient_df['Outcome Variable'] == 'Positive')
selected_patients = updated_patient_df[mask].reset_index(drop=True)
selected_patients.head()
selected_patient = selected_patients.iloc[0]
selected_patient
# # Step 2: Create IDentity Photo for the Front Desk Agent
# ## 2.1 Build the Vision Model for Gender Classification (Image Classification Task)
# In[46]:
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("image-classification", model="rizvandwiki/gender-classification")
# In[47]:
# Load model directly
from transformers import AutoImageProcessor, AutoModelForImageClassification
processor = AutoImageProcessor.from_pretrained("rizvandwiki/gender-classification")
model = AutoModelForImageClassification.from_pretrained("rizvandwiki/gender-classification")
# In machine learning, particularly in classification tasks, logits are the raw, unnormalized outputs produced by a model's final layer before any activation function is applied. These outputs represent the model's confidence scores for each class and are essential for subsequent probability calculations.
# In[48]:
from transformers import AutoModelForImageClassification, AutoProcessor
from PIL import Image
import requests
# Load the model and processor
model_name = "rizvandwiki/gender-classification"
model = AutoModelForImageClassification.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained(model_name)
# Load the image from URL or local path
image_url = "https://thispersondoesnotexist.com"
image = Image.open(requests.get(image_url, stream=True).raw)
# Prepare the image for the model
inputs = processor(images=image, return_tensors="pt")
# Perform inference
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax(-1).item()
# Map prediction to class label
classes = model.config.id2label
gender_label = classes[predicted_class]
print(f"Predicted Gender: {gender_label}")
import matplotlib.pyplot as plt
# Display the image and prediction
plt.imshow(image)
plt.axis('off') # Hide axes
plt.title(f"Predicted Gender: {gender_label}")
plt.show()
# ## 2.2 Build the Vision Model for Age Classification (Image Classification Task)
# Load age classification model
age_model_name = "nateraw/vit-age-classifier"
age_model = AutoModelForImageClassification.from_pretrained(age_model_name)
age_processor = AutoProcessor.from_pretrained(age_model_name)
# Age Prediction
age_inputs = age_processor(images=image, return_tensors="pt")
age_outputs = age_model(**age_inputs)
age_logits = age_outputs.logits
age_prediction = age_logits.argmax(-1).item()
age_label = age_model.config.id2label[age_prediction]
age_label
# Display the image with both predictions
plt.imshow(image)
plt.axis('off')
plt.title(f"Predicted Gender: {gender_label}, Predicted Age: {age_label}")
plt.show()
# # Step 3: Start Building Multi-Agents
#
# Define Each AI Agent
# We'll define agents for:
#
# * Administration Front Desk
# * Physician for General Health Examination + Blood Laboratory
# * X-Ray Image Department
# ## 3.1 Hospital Front Desk Agent
#
#
# **--IMPORTANT NOTE--** <br>
# 1. Don't forget to save one photo from https://thispersondoesnotexist.com/
# <br> as female.jpg and save it to this Path "/content/sample_data/'
# <br> which is standard path within your Google Colab
#
# ---
# 2. Don't Forget to Save one of the images from the x-ray-dataset <br>**Load Dataset in this way:** <br>
# patient_x_ray_path = "keremberke/chest-xray-classification" <br>
# x_ray_ds = load_dataset(patient_x_ray_path, name="full")
# <br> Then save one image labelled as x-ray-chest.jpg to the path "/content/sample_data/'
patient_x_ray_path = "keremberke/chest-xray-classification"
x_ray_ds = load_dataset(patient_x_ray_path, name="full")
from typing import List, Tuple, Dict, Any, Sequence, Annotated, Literal
from typing_extensions import TypedDict
from langchain_core.messages import BaseMessage
import operator
import functools
from langchain_core.messages import HumanMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, create_react_agent
from langchain_core.tools import tool
from transformers import AutoModelForImageClassification, AutoProcessor
from PIL import Image
from pydantic import BaseModel
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
from langchain_core.prompts import ChatPromptTemplate
# Annotated in python allows developers to declare the type of a reference and provide additional information related to it.
# Literal, after that the value are exact and literal
#----------------- Build Fucntions that Agents use ----------------------
def patient_verification_tool(image_Path, selected_patient_data, updated_patient_df) -> str:
"""Detects the gender from an image provided as a file path."""
from PIL import Image
print(image_Path)
model = AutoModelForImageClassification.from_pretrained("rizvandwiki/gender-classification")
processor = AutoProcessor.from_pretrained("rizvandwiki/gender-classification")
image = Image.open(image_Path)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(-1).item()
print(f"Predicted Gender Of Patient is : {model.config.id2label[predicted_class]}")
predicted_gender = model.config.id2label[predicted_class]
from PIL import Image
model = AutoModelForImageClassification.from_pretrained("nateraw/vit-age-classifier")
processor = AutoProcessor.from_pretrained("nateraw/vit-age-classifier")
image = Image.open(image_Path)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(-1).item()
print(f"predicted Age Class: {model.config.id2label[predicted_class]}")
predicted_age_range = model.config.id2label[predicted_class]
# Parse the age range string (e.g., "20-29")
age_min, age_max = map(int, predicted_age_range.split('-'))
print(f"age_mi: {age_min}, age_max: {age_max}")
# Verify against the DataFrame
matching_row = updated_patient_df[
(updated_patient_df["First_Name"] == selected_patient["First_Name"]) &
(updated_patient_df["Last_Name"] == selected_patient["Last_Name"]) &
(updated_patient_df["Patient_ID"] == selected_patient["Patient_ID"]) &
(updated_patient_df["Gender"].str.lower() == predicted_gender) &
(updated_patient_df["Age"].between(age_min, age_max))
]
print(f"matching_row {matching_row} ")
if not matching_row.empty:
patient_verification = f'''Verification successful.
Patient is : {selected_patient["First_Name"]} {selected_patient["Last_Name"]}
with ID {selected_patient["Patient_ID"]}
which is {predicted_gender} in age range of {predicted_age_range} can proceed to the physician.'''
else:
patient_verification = "ID not verified. Patient cannot proceed."
return patient_verification
#------------------- Define Agents-----------------------------
class AgentState(TypedDict):
initial_prompt : str
messages: Annotated[List[BaseMessage], operator.add]
patient_verification : str
def front_desk_agent(state, image_Path, selected_patient_data, updated_patient_df):
initial_prompt = state["initial_prompt"]
# Call function
patient_verification = patient_verification_tool(image_Path, selected_patient_data, updated_patient_df)
print(patient_verification)
return {"patient_verification": patient_verification}
#-----------------------------------------------------------------
# Build the LangGraph for Hospital Front Desk #
#-----------------------------------------------------------------
image_Path = "female.jpg"
selected_patient_data = selected_patient.to_dict()
updated_patient_df
front_desk_agent_node = functools.partial(front_desk_agent,
image_Path = image_Path,
selected_patient_data=selected_patient_data,
updated_patient_df =updated_patient_df)
# 6. Set up the Langgraph state graph
FrontDeskGraph = StateGraph(AgentState)
# Define nodes for workflow
FrontDeskGraph.add_node("front_desk_agent", front_desk_agent_node)
FrontDeskGraph.add_edge(START, "front_desk_agent")
FrontDeskGraph.add_edge("front_desk_agent", END)
# Initialize memory to persist state between graph runs
FrontDeskWorkflow = FrontDeskGraph.compile()
from IPython.display import Markdown, display, Image
display(Image(FrontDeskWorkflow.get_graph(xray=True).draw_mermaid_png()))
initial_prompt = "You are Front Desk Administrator in an Hospital in the Netherlands. Start Verification of the following Patient:"
# Run the workflow
inputs = {"initial_prompt" : initial_prompt
}
output = FrontDeskWorkflow.invoke(inputs)
output
display(Markdown(output['patient_verification']))
# ## 3.2 Pysician Agent
def question_patient_symptoms(selected_patient_data) -> str:
"""Asks the patient about symptoms, generates responses, and summarizes the answers based on patient data."""
symptoms_questions = {
"Cough": "\nAre you coughing?\n",
"Fatigue": "\nDo you feel fatigue?\n",
"\nDifficulty Breathing": "Do you have difficulty breathing?\n"
}
conversation = []
for symptom, question in symptoms_questions.items():
conversation.append(f"\nPhysician: {question}")
response = selected_patient_data.get(symptom, "No")
answer = "Yes" if response == "Yes" else "No"
conversation.append(f"\nPatient: {answer}")
first_name = selected_patient_data.get("First_Name", "")
last_name = selected_patient_data.get("Last_Name", "")
patient_id = selected_patient_data.get("Patient_ID", "")
gender = selected_patient_data.get("Gender", "")
age = selected_patient_data.get("Age", "")
profile = f"\nYou are {first_name} {last_name}, a {age} years old {gender} with Patient ID: {patient_id}."
summary = profile +"I gathered that you are experiencing the following: "
summaries = []
for symptom in symptoms_questions.keys():
response = selected_patient_data.get(symptom, "No")
if response == "Yes":
summaries.append(f"you are experiencing {symptom.lower()}")
else:
summaries.append(f"\nI am glad you are not experiencing {symptom.lower()}")
summary += "; ".join(summaries) + "."
conversation.append(f"\nPhysician: {summary}")
return "\n".join(conversation)
def perform_examination(selected_patient_data) -> str:
"""Performs examination by reporting fever, blood pressure, and cholesterol level from patient data."""
fever = selected_patient_data.get("Fever", "Unknown")
blood_pressure = selected_patient_data.get("Blood Pressure", "Unknown")
cholesterol = selected_patient_data.get("Cholesterol Level", "Unknown")
return f"Examination Results: Fever - {fever}, Blood Pressure - {blood_pressure}, Cholesterol Level - {cholesterol}"
def diagnose_patient(selected_patient_data) -> str:
"""Provides diagnosis based on Disease and Outcome columns in patient data."""
disease = selected_patient_data.get("Disease", "Unknown Disease")
outcome = selected_patient_data.get("Outcome Variable", "Unknown Outcome")
if outcome == 'Positive':
diagnosis = 'Make X-Ray from Chest'
else:
diagnosis = 'Rest to Recover'
return f"Diagnosis: {disease}. Test Result: {outcome}. Final Diagnosis: {diagnosis}", diagnosis
class AgentState(TypedDict):
initial_prompt : str
messages: Annotated[List[BaseMessage], operator.add]
question_patient_symptoms: str
examination_patient: str
diagnosis_patient: str
diagnosis : str
def physician_agent(state, selected_patient_data):
question_patient= question_patient_symptoms(selected_patient_data)
examination = perform_examination(selected_patient_data)
diagnosis_report, diagnosis = diagnose_patient(selected_patient_data)
return {"question_patient_symptoms": question_patient,
"examination_patient": examination,
"diagnosis_patient": diagnosis_report,
"diagnosis": diagnosis}
selected_patient_data = selected_patient.to_dict()
physician_agent_node = functools.partial(physician_agent,
selected_patient_data=selected_patient_data)
# 6. Set up the Langgraph state graph
PhysicianGraph = StateGraph(AgentState)
# Define nodes for workflow
PhysicianGraph.add_node("physician_agent", physician_agent_node)
PhysicianGraph.add_edge(START, "physician_agent")
PhysicianGraph.add_edge("physician_agent", END)
# Initialize memory to persist state between graph runs
PhysicianWorkflow = PhysicianGraph.compile()
display(Image(PhysicianWorkflow.get_graph(xray=True).draw_mermaid_png()))
initial_prompt = "You are a Very Experience Doctor in an Hospital in the Netherlands. Start a conversation with the patient and determine \
symptoms and give diagnosis"
# Run the workflow
inputs = {"initial_prompt" : initial_prompt
}
output = PhysicianWorkflow.invoke(inputs)
output
display(Markdown(output['question_patient_symptoms']))
display(Markdown(output['examination_patient']))
display(Markdown(output['diagnosis_patient']))
# ## 3.3 Radiologist
def examine_X_ray_image(patient_x_ray_path) -> str:
"""Use Vision Models to recognise if the X-Ray Image of Patient is NORMAL or PNEUMONIA"""
# Model in Hugging Face: https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
# vit-xray-pneumonia-classification
x_ray_ds = load_dataset(patient_x_ray_path, name="full")
random_index = random.randint(0, x_ray_ds['train'].shape[0] - 1)
patient_x_ray_image = x_ray_ds['train'][random_index]['image']
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
patient_x_ray_results = classifier(patient_x_ray_image)
# Find the label with the highest score and its score
highest = max(patient_x_ray_results, key=lambda x: x['score'])
highest_score_label = highest['label']
highest_score = highest['score'] * 100 # Convert to percentage
# Choose the correct verb based on the label
verb = "is" if highest_score_label == "NORMAL" else "has"
return f"Patient {verb} {highest_score_label} with Probability of ca. {highest_score:.0f}%"
class AgentState(TypedDict):
initial_prompt : str
messages: Annotated[List[BaseMessage], operator.add]
pneumonia_detection: str
def radiologist_agent(state, patient_x_ray_path):
pneumonia_detection = examine_X_ray_image(patient_x_ray_path)
return {"pneumonia_detection": pneumonia_detection}
patient_x_ray_path = "keremberke/chest-xray-classification"
radiologist_agent_node = functools.partial(radiologist_agent,
patient_x_ray_path=patient_x_ray_path)
# 6. Set up the Langgraph state graph
RadiologistGraph = StateGraph(AgentState)
# Define nodes for workflow
RadiologistGraph.add_node("radiologist_agent", radiologist_agent_node)
RadiologistGraph.add_edge(START, "radiologist_agent")
RadiologistGraph.add_edge("radiologist_agent", END)
# Initialize memory to persist state between graph runs
RadiologistWorkflow = RadiologistGraph.compile()
display(Image(RadiologistWorkflow.get_graph(xray=True).draw_mermaid_png()))
initial_prompt = "You are a Very Experienced Radiologist in an Hospital in the Netherlands. Diagnose if the patient has pneumonia"
# Run the workflow
inputs = {"initial_prompt" : initial_prompt
}
output = RadiologistWorkflow.invoke(inputs)
output
display(Markdown(output['pneumonia_detection']))
# # Step 4: Putting All Agents in One Graph
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
from langchain_core.prompts import ChatPromptTemplate
selected_patient_data = selected_patient.to_dict()
image_Path = "female.jpg"
patient_x_ray_image = patient_x_ray
def patient_verification_tool(image_Path, selected_patient_data, updated_patient_df) -> str:
"""Detects the gender from an image provided as a file path."""
from PIL import Image
print(image_Path)
model = AutoModelForImageClassification.from_pretrained("rizvandwiki/gender-classification")
processor = AutoProcessor.from_pretrained("rizvandwiki/gender-classification")
image = Image.open(image_Path)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(-1).item()
print(f"Predicted Gender Of Patient is : {model.config.id2label[predicted_class]}")
predicted_gender = model.config.id2label[predicted_class]
from PIL import Image
model = AutoModelForImageClassification.from_pretrained("nateraw/vit-age-classifier")
processor = AutoProcessor.from_pretrained("nateraw/vit-age-classifier")
image = Image.open(image_Path)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(-1).item()
print(f"predicted Age Class: {model.config.id2label[predicted_class]}")
predicted_age_range = model.config.id2label[predicted_class]
# Parse the age range string (e.g., "20-29")
age_min, age_max = map(int, predicted_age_range.split('-'))
print(f"age_mi: {age_min}, age_max: {age_max}")
# Verify against the DataFrame
matching_row = updated_patient_df[
(updated_patient_df["First_Name"] == selected_patient["First_Name"]) &
(updated_patient_df["Last_Name"] == selected_patient["Last_Name"]) &
(updated_patient_df["Patient_ID"] == selected_patient["Patient_ID"]) &
(updated_patient_df["Gender"].str.lower() == predicted_gender) &
(updated_patient_df["Age"].between(age_min, age_max))
]
print(f"matching_row {matching_row} ")
if not matching_row.empty:
patient_verification = f'''Verification successful.
Patient is : {selected_patient["First_Name"]} {selected_patient["Last_Name"]}
with ID {selected_patient["Patient_ID"]}
which is {predicted_gender} in age range of {predicted_age_range} can proceed to the physician.'''
else:
patient_verification = "ID not verified. Patient cannot proceed."
return patient_verification
def question_patient_symptoms(selected_patient_data) -> str:
"""Asks the patient about symptoms, generates responses, and summarizes the answers based on patient data."""
symptoms_questions = {
"Cough": "\nAre you coughing?\n",
"Fatigue": "\nDo you feel fatigue?\n",
"\nDifficulty Breathing": "Do you have difficulty breathing?\n"
}
conversation = []
for symptom, question in symptoms_questions.items():
conversation.append(f"\nPhysician: {question}")
response = selected_patient_data.get(symptom, "No")
answer = "Yes" if response == "Yes" else "No"
conversation.append(f"\nPatient: {answer}")
first_name = selected_patient_data.get("First_Name", "")
last_name = selected_patient_data.get("Last_Name", "")
patient_id = selected_patient_data.get("Patient_ID", "")
gender = selected_patient_data.get("Gender", "")
age = selected_patient_data.get("Age", "")
profile = f"\nYou are {first_name} {last_name}, a {age} years old {gender} with Patient ID: {patient_id}."
summary = profile +"I gathered that you are experiencing the following: "
summaries = []
for symptom in symptoms_questions.keys():
response = selected_patient_data.get(symptom, "No")
if response == "Yes":
summaries.append(f"you are experiencing {symptom.lower()}")
else:
summaries.append(f"\nI am glad you are not experiencing {symptom.lower()}")
summary += "; ".join(summaries) + "."
conversation.append(f"\nPhysician: {summary}")
return "\n".join(conversation)
def perform_examination(selected_patient_data) -> str:
"""Performs examination by reporting fever, blood pressure, and cholesterol level from patient data."""
fever = selected_patient_data.get("Fever", "Unknown")
blood_pressure = selected_patient_data.get("Blood Pressure", "Unknown")
cholesterol = selected_patient_data.get("Cholesterol Level", "Unknown")
return f"Examination Results: Fever - {fever}, Blood Pressure - {blood_pressure}, Cholesterol Level - {cholesterol}"
def diagnose_patient(selected_patient_data) -> str:
"""Provides diagnosis based on Disease and Outcome columns in patient data."""
disease = selected_patient_data.get("Disease", "Unknown Disease")
outcome = selected_patient_data.get("Outcome Variable", "Unknown Outcome")
if outcome == 'Positive':
diagnosis = 'Make X-Ray from Chest'
else:
diagnosis = 'Rest to Recover'
return f"Diagnosis: {disease}. Test Result: {outcome}. Final Diagnosis: {diagnosis}", diagnosis
def examine_X_ray_image(patient_x_ray_path) -> str:
"""Use Vision Models to recognise if the X-Ray Image of Patient is NORMAL or PNEUMONIA"""
# Model in Hugging Face: https://huggingface.co/lxyuan/vit-xray-pneumonia-classification
# vit-xray-pneumonia-classification
x_ray_ds = load_dataset(patient_x_ray_path, name="full")
random_index = random.randint(0, x_ray_ds['train'].shape[0] - 1)
patient_x_ray_image = x_ray_ds['train'][random_index]['image']
classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")
patient_x_ray_results = classifier(patient_x_ray_image)
# Find the label with the highest score and its score
highest = max(patient_x_ray_results, key=lambda x: x['score'])
highest_score_label = highest['label']
highest_score = highest['score'] * 100 # Convert to percentage
# Choose the correct verb based on the label
verb = "is" if highest_score_label == "NORMAL" else "has"
return f"Patient {verb} {highest_score_label} with Probability of ca. {highest_score:.0f}%"
# The agent state is the input to each node in the graph
class AgentState(TypedDict):
# The annotation tells the graph that new messages will always
# be added to the current states
initial_prompt : str
messages: Annotated[List[BaseMessage], operator.add]
patient_verification : str
question_patient_symptoms: str
examination_patient: str
diagnosis_patient: str
diagnosis : str
pneumonia_detection: str
def front_desk_agent(state, image_Path, selected_patient_data, updated_patient_df):
initial_prompt = state["initial_prompt"]
patient_verification = patient_verification_tool(image_Path, selected_patient_data, updated_patient_df)
print(patient_verification)
return {"patient_verification": patient_verification}
def physician_agent(state, selected_patient_data):
question_patient= question_patient_symptoms(selected_patient_data)
examination = perform_examination(selected_patient_data)
diagnosis_report, diagnosis = diagnose_patient(selected_patient_data)
pneumonia_detection = examine_X_ray_image(patient_x_ray_path)
return {"question_patient_symptoms": question_patient,
"examination_patient": examination,
"diagnosis_patient": diagnosis_report,
"diagnosis": diagnosis}
def radiologist_agent(state, patient_x_ray_path):
pneumonia_detection = examine_X_ray_image(patient_x_ray_path)
return {"pneumonia_detection": pneumonia_detection}
def decide_on_radiologist(state):
if state["diagnosis"] == 'Make X-Ray from Chest':
return 'radiologist'
else:
return ''
image_Path = "female.jpg"
selected_patient_data = selected_patient.to_dict()
updated_patient_df
patient_x_ray_path = "keremberke/chest-xray-classification"
front_desk_agent_node = functools.partial(front_desk_agent,
image_Path = image_Path,
selected_patient_data=selected_patient_data,
updated_patient_df =updated_patient_df)
physician_agent_node = functools.partial(physician_agent,
selected_patient_data=selected_patient_data)
radiologist_agent_node = functools.partial(radiologist_agent,
patient_x_ray_path=patient_x_ray_path)
def decide_on_radiologist(state):
if state["diagnosis"] == 'Make X-Ray from Chest':
return 'radiologist'
else:
return 'end'
# 6. Set up the Langgraph state graph
HospitalGraph = StateGraph(AgentState)
# Define nodes for workflow
HospitalGraph.add_node("front_desk_agent", front_desk_agent_node)
HospitalGraph.add_node("physician_agent", physician_agent_node)
HospitalGraph.add_node("radiologist_agent", radiologist_agent_node)
HospitalGraph.add_edge(START, "front_desk_agent")
HospitalGraph.add_edge("front_desk_agent", "physician_agent")
HospitalGraph.add_conditional_edges("physician_agent",
decide_on_radiologist,
{'radiologist': "radiologist_agent",
'end': END})
# Initialize memory to persist state between graph runs
HospitalWorkflow = HospitalGraph.compile()
display(Image(HospitalWorkflow.get_graph(xray=True).draw_mermaid_png()))
initial_prompt = "Start with the following Patient"
# Run the workflow
inputs = {"initial_prompt" : initial_prompt
}
output = HospitalWorkflow.invoke(inputs)
output
display(Markdown(output['patient_verification']))
display(Markdown(output['question_patient_symptoms']))
display(Markdown(output['examination_patient']))
display(Markdown(output['diagnosis_patient']))
display(Markdown(output['pneumonia_detection']))
# # Step 5: Gradio Dashboard
# ## 5.1 Build the Hospital Dashboard APP
# In[69]:
x_ray_image_path = 'x-ray-chest.png'
import gradio as gr
info = (
f"**First Name:** {selected_patient_data['First_Name']}\n\n"
f"**Last Name:** {selected_patient_data['Last_Name']}\n\n"
f"**Patient ID:** {selected_patient_data['Patient_ID']}"
)
def verify_age_gender():
"""
Function to verify age and gender.
"""
# Placeholder logic: In a real scenario, perform necessary checks or computations
initial_prompt = "You are Front Desk Administrator in an Hospital in the Netherlands. Start Verification of the following Patient:"
inputs = {"initial_prompt" : initial_prompt
}
output = FrontDeskWorkflow.invoke(inputs)
verification_message = 'โ
' + output['patient_verification']
return verification_message, gr.update(visible=True)
def physician_examination():
initial_prompt = "You are a Very Experience Doctor in an Hospital in the Netherlands. Start a conversation with the patient and determine \
symptoms and give diagnosis"
# Run the workflow
inputs = {"initial_prompt" : initial_prompt
}
output = PhysicianWorkflow.invoke(inputs)
output_all = f''' ๐ฉบ {output['question_patient_symptoms']}\n
๐ {output['examination_patient']}\n
๐ฌ๏ธ {output['diagnosis_patient']}'''
return output_all, gr.update(visible=True)
def pneumonia_detection():
initial_prompt = "You are a Very Experienced Radiologist in an Hospital in the Netherlands. Diagnose if the patient has pneumonia"
inputs = {"initial_prompt" : initial_prompt
}
output = RadiologistWorkflow.invoke(inputs)
pneumonia_detection = 'From X-Ray Image ๐ผ๏ธ ' + output['pneumonia_detection']
return pneumonia_detection
def take_xray_image():
return gr.update(visible=True), gr.update(visible=True)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(info)
# Add a Button below the Markdown
verify_button = gr.Button("Verify Age and Gender")
# Add an output component to display verification status
verification_output = gr.Textbox(label="Verification Status", interactive=False, lines=5, max_lines=None)
# Add a Button below the Markdown
physician_button = gr.Button("Get Examination at Physician", visible=False)
physician_output = gr.Textbox(label="Examination by Physician Placeholder", interactive=False, lines=35, max_lines=None)
x_ray_button = gr.Button("Take Chest X-Ray Image", visible=False)
# Display X-Ray Image (Initially Hidden)
xray_image_display = gr.Image(value=x_ray_image_path, label="X-Ray Image", visible=False)
radiologist_button = gr.Button("Go to Radiologist", visible=False)
# Add an output component to display verification status
radiologist_output = gr.Textbox(label="Radiologist Placeholder", interactive=False, lines=5, max_lines=None)
with gr.Column(scale=1):
gr.Image(value=image_Path, label="Static Image", show_label=True)
# Define the button's action: When clicked, call verify_age_gender and display the result
verify_button.click(fn=verify_age_gender, inputs=None, outputs=[verification_output, physician_button])
physician_button.click(fn=physician_examination, inputs=None, outputs=[physician_output, x_ray_button])
x_ray_button.click(fn=take_xray_image, inputs=None, outputs=[xray_image_display, radiologist_button])
radiologist_button.click(fn=pneumonia_detection, inputs=None, outputs=[radiologist_output])
# ## 5.2 Run the App
# Launch the app
#demo.launch(share=True, debug=False)
#demo.launch(share=True, debug=False, allowed_paths=[dataDir], ssr_mode=False)
demo.launch(share=True, debug=False, ssr_mode=False)
|