Spaces:
Sleeping
Sleeping
| from datasets import load_dataset | |
| from transformers import pipeline | |
| import soundfile as sf | |
| import torch | |
| import gradio as gr | |
| import numpy as np | |
| def predict_image(image): | |
| pipe = pipeline("image-classification", model="google/vit-base-patch16-224") | |
| ClassifedImage=pipe(image) | |
| result=ClassifedImage[0]['label'] | |
| return result | |
| def translate_to_arabic(text): | |
| pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ar") | |
| result=pipe(text , max_length=100) | |
| return result[0]['translation_text'] | |
| def text_to_speech(text): | |
| pipe = pipeline("text-to-speech", model="MBZUAI/speecht5_tts_clartts_ar") | |
| embedding_dataset=load_dataset("herwoww/arabic_xvector_embeddings" , split="validation") | |
| speaker_embedding=torch.tensor(embedding_dataset[100]['speaker_embeddings']).unsqueeze(0) | |
| speech=pipe(text , forward_params={'speaker_embeddings':speaker_embedding}) | |
| return (speech['sampling_rate'],np.array(speech['audio'], dtype=np.float32)) | |
| from PIL import Image | |
| with gr.Blocks() as app: | |
| gr.Markdown("Image Classification, Arabic Translation, TTS") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input=gr.Image(type="pil",label="Upload the Image to classify it" ) | |
| classify_image=gr.Button("Classify the Image") | |
| pred=gr.Textbox(label="Classifcation Result") | |
| classify_image.click(fn=predict_image , inputs=image_input , outputs=pred) | |
| with gr.Row(): | |
| translated_output=gr.Textbox(label="Translated Text") | |
| translate_btn=gr.Button("Translate to Arabic") | |
| translate_btn.click(fn=translate_to_arabic , inputs=pred , outputs=translated_output) | |
| with gr.Row(): | |
| tts_btn=gr.Button("Convert to Speech") | |
| audio_output=gr.Audio(label="Audio Output") | |
| tts_btn.click(fn=text_to_speech , inputs=translated_output , outputs=audio_output) | |
| app.launch() |