GENAI_NOV_Trial / app.py
hebaadel's picture
Create app.py
e5d3d8f verified
from datasets import load_dataset
from transformers import pipeline
import soundfile as sf
import torch
import gradio as gr
import numpy as np
def predict_image(image):
pipe = pipeline("image-classification", model="google/vit-base-patch16-224")
ClassifedImage=pipe(image)
result=ClassifedImage[0]['label']
return result
def translate_to_arabic(text):
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ar")
result=pipe(text , max_length=100)
return result[0]['translation_text']
def text_to_speech(text):
pipe = pipeline("text-to-speech", model="MBZUAI/speecht5_tts_clartts_ar")
embedding_dataset=load_dataset("herwoww/arabic_xvector_embeddings" , split="validation")
speaker_embedding=torch.tensor(embedding_dataset[100]['speaker_embeddings']).unsqueeze(0)
speech=pipe(text , forward_params={'speaker_embeddings':speaker_embedding})
return (speech['sampling_rate'],np.array(speech['audio'], dtype=np.float32))
from PIL import Image
with gr.Blocks() as app:
gr.Markdown("Image Classification, Arabic Translation, TTS")
with gr.Row():
with gr.Column():
image_input=gr.Image(type="pil",label="Upload the Image to classify it" )
classify_image=gr.Button("Classify the Image")
pred=gr.Textbox(label="Classifcation Result")
classify_image.click(fn=predict_image , inputs=image_input , outputs=pred)
with gr.Row():
translated_output=gr.Textbox(label="Translated Text")
translate_btn=gr.Button("Translate to Arabic")
translate_btn.click(fn=translate_to_arabic , inputs=pred , outputs=translated_output)
with gr.Row():
tts_btn=gr.Button("Convert to Speech")
audio_output=gr.Audio(label="Audio Output")
tts_btn.click(fn=text_to_speech , inputs=translated_output , outputs=audio_output)
app.launch()