MLP_Inference / app.py
heerjtdev's picture
Update app.py
98eaa40
import gradio as gr
import torch
import torch.nn as nn
import pdfplumber
import json
import os
import re
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
from TorchCRF import CRF
# --- Configuration ---
# Ensure this filename matches exactly what you uploaded to the Space
MODEL_FILENAME = "layoutlmv3_nonlinear_scratch.pth"
BASE_MODEL_ID = "microsoft/layoutlmv3-base"
LABELS = ["O", "B-QUESTION", "I-QUESTION", "B-OPTION", "I-OPTION", "B-ANSWER", "I-ANSWER", "B-SECTION_HEADING", "I-SECTION_HEADING", "B-PASSAGE", "I-PASSAGE"]
LABEL2ID = {l: i for i, l in enumerate(LABELS)}
ID2LABEL = {i: l for l, i in LABEL2ID.items()}
# ---------------------------------------------------------
# 1. MODEL ARCHITECTURE
# ---------------------------------------------------------
class LayoutLMv3CRF(nn.Module):
def __init__(self, num_labels):
super().__init__()
self.layoutlm = LayoutLMv3Model.from_pretrained(BASE_MODEL_ID)
hidden_size = self.layoutlm.config.hidden_size
self.classifier = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.GELU(),
nn.LayerNorm(hidden_size),
nn.Dropout(0.1),
nn.Linear(hidden_size, num_labels)
)
self.crf = CRF(num_labels)
def forward(self, input_ids, bbox, attention_mask, labels=None):
outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
sequence_output = outputs.last_hidden_state
emissions = self.classifier(sequence_output)
if labels is not None:
log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
return -log_likelihood.mean()
else:
return self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
# ---------------------------------------------------------
# 2. MODEL LOADING
# ---------------------------------------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = LayoutLMv3TokenizerFast.from_pretrained(BASE_MODEL_ID)
model = None
def load_model():
global model
if model is None:
print(f"🔄 Loading model from {MODEL_FILENAME}...")
if not os.path.exists(MODEL_FILENAME):
raise FileNotFoundError(f"Model file {MODEL_FILENAME} not found. Please upload it to the Space.")
model = LayoutLMv3CRF(num_labels=len(LABELS))
state_dict = torch.load(MODEL_FILENAME, map_location=device)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
print("✅ Model loaded successfully.")
return model
# ---------------------------------------------------------
# 3. CONVERSION LOGIC (Your Custom Function)
# ---------------------------------------------------------
def convert_bio_to_structured_json(predictions):
structured_data = []
current_item = None
current_option_key = None
current_passage_buffer = []
current_text_buffer = []
first_question_started = False
last_entity_type = None
just_finished_i_option = False
is_in_new_passage = False
def finalize_passage_to_item(item, passage_buffer):
if passage_buffer:
passage_text = re.sub(r'\s{2,}', ' ', ' '.join(passage_buffer)).strip()
if item.get('passage'): item['passage'] += ' ' + passage_text
else: item['passage'] = passage_text
passage_buffer.clear()
# Flatten predictions list
flat_predictions = []
for page in predictions:
flat_predictions.extend(page['data'])
for idx, item in enumerate(flat_predictions):
word = item['word']
label = item['predicted_label']
entity_type = label[2:].strip() if label.startswith(('B-', 'I-')) else None
current_text_buffer.append(word)
previous_entity_type = last_entity_type
is_passage_label = (entity_type == 'PASSAGE')
if not first_question_started:
if label != 'B-QUESTION' and not is_passage_label:
just_finished_i_option = False
is_in_new_passage = False
continue
if is_passage_label:
current_passage_buffer.append(word)
last_entity_type = 'PASSAGE'
just_finished_i_option = False
is_in_new_passage = False
continue
if label == 'B-QUESTION':
if not first_question_started:
header_text = ' '.join(current_text_buffer[:-1]).strip()
if header_text or current_passage_buffer:
metadata_item = {'type': 'METADATA', 'passage': ''}
finalize_passage_to_item(metadata_item, current_passage_buffer)
if header_text: metadata_item['text'] = header_text
structured_data.append(metadata_item)
first_question_started = True
current_text_buffer = [word]
if current_item is not None:
finalize_passage_to_item(current_item, current_passage_buffer)
current_item['text'] = ' '.join(current_text_buffer[:-1]).strip()
structured_data.append(current_item)
current_text_buffer = [word]
current_item = {
'question': word, 'options': {}, 'answer': '', 'passage': '', 'text': ''
}
current_option_key = None
last_entity_type = 'QUESTION'
just_finished_i_option = False
is_in_new_passage = False
continue
if current_item is not None:
if is_in_new_passage:
if 'new_passage' not in current_item: current_item['new_passage'] = word
else: current_item['new_passage'] += f' {word}'
if label.startswith('B-') or (label.startswith('I-') and entity_type != 'PASSAGE'):
is_in_new_passage = False
if label.startswith(('B-', 'I-')): last_entity_type = entity_type
continue
is_in_new_passage = False
if label.startswith('B-'):
if entity_type in ['QUESTION', 'OPTION', 'ANSWER', 'SECTION_HEADING']:
finalize_passage_to_item(current_item, current_passage_buffer)
current_passage_buffer = []
last_entity_type = entity_type
if entity_type == 'PASSAGE':
if previous_entity_type == 'OPTION' and just_finished_i_option:
current_item['new_passage'] = word
is_in_new_passage = True
else: current_passage_buffer.append(word)
elif entity_type == 'OPTION':
current_option_key = word
current_item['options'][current_option_key] = word
just_finished_i_option = False
elif entity_type == 'ANSWER':
current_item['answer'] = word
current_option_key = None
just_finished_i_option = False
elif entity_type == 'QUESTION':
current_item['question'] += f' {word}'
just_finished_i_option = False
elif label.startswith('I-'):
if entity_type == 'QUESTION': current_item['question'] += f' {word}'
elif entity_type == 'PASSAGE':
if previous_entity_type == 'OPTION' and just_finished_i_option:
current_item['new_passage'] = word
is_in_new_passage = True
else:
if not current_passage_buffer: last_entity_type = 'PASSAGE'
current_passage_buffer.append(word)
elif entity_type == 'OPTION' and current_option_key is not None:
current_item['options'][current_option_key] += f' {word}'
just_finished_i_option = True
elif entity_type == 'ANSWER': current_item['answer'] += f' {word}'
just_finished_i_option = (entity_type == 'OPTION')
if current_item is not None:
finalize_passage_to_item(current_item, current_passage_buffer)
current_item['text'] = ' '.join(current_text_buffer).strip()
structured_data.append(current_item)
# Clean text
for item in structured_data:
if 'text' in item: item['text'] = re.sub(r'\s{2,}', ' ', item['text']).strip()
if 'new_passage' in item: item['new_passage'] = re.sub(r'\s{2,}', ' ', item['new_passage']).strip()
return structured_data
# ---------------------------------------------------------
# 4. PROCESSING PIPELINE
# ---------------------------------------------------------
def process_pdf(pdf_file):
if pdf_file is None:
return None, "Please upload a PDF file."
try:
model = load_model()
# 1. Extract
extracted_pages = []
with pdfplumber.open(pdf_file.name) as pdf:
for page_idx, page in enumerate(pdf.pages):
width, height = page.width, page.height
words_data = page.extract_words()
page_tokens = []
page_bboxes = []
for w in words_data:
text = w['text']
x0 = int((w['x0'] / width) * 1000)
top = int((w['top'] / height) * 1000)
x1 = int((w['x1'] / width) * 1000)
bottom = int((w['bottom'] / height) * 1000)
box = [max(0, min(x0, 1000)), max(0, min(top, 1000)),
max(0, min(x1, 1000)), max(0, min(bottom, 1000))]
page_tokens.append(text)
page_bboxes.append(box)
extracted_pages.append({"page_id": page_idx, "tokens": page_tokens, "bboxes": page_bboxes})
# 2. Inference
raw_predictions = []
for page in extracted_pages:
tokens = page['tokens']
bboxes = page['bboxes']
if not tokens: continue
encoding = tokenizer(tokens, boxes=bboxes, return_tensors="pt",
padding="max_length", truncation=True, max_length=512,
return_offsets_mapping=True)
input_ids = encoding.input_ids.to(device)
bbox = encoding.bbox.to(device)
attention_mask = encoding.attention_mask.to(device)
with torch.no_grad():
preds = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
pred_tags = preds[0]
word_ids = encoding.word_ids()
aligned_data = []
prev_word_idx = None
for i, word_idx in enumerate(word_ids):
if word_idx is None: continue
if word_idx != prev_word_idx:
label_str = ID2LABEL[pred_tags[i]]
aligned_data.append({"word": tokens[word_idx], "predicted_label": label_str})
prev_word_idx = word_idx
raw_predictions.append({"data": aligned_data})
# 3. Structure
final_json = convert_bio_to_structured_json(raw_predictions)
# Save to file for download
output_filename = "structured_output.json"
with open(output_filename, "w", encoding="utf-8") as f:
json.dump(final_json, f, indent=2, ensure_ascii=False)
return output_filename, f"✅ Successfully processed {len(extracted_pages)} pages. Found {len(final_json)} structured items."
except Exception as e:
return None, f"❌ Error: {str(e)}"
# ---------------------------------------------------------
# 5. GRADIO INTERFACE
# ---------------------------------------------------------
# iface = gr.Interface(
# fn=process_pdf,
# inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
# outputs=[
# gr.File(label="Download JSON Output"),
# gr.Textbox(label="Status Log")
# ],
# title="LayoutLMv3 PDF Parser",
# description="Upload a document to extract Questions, Options, and Passages into structured JSON.",
# allow_flagging="never"
# )
# if __name__ == "__main__":
# iface.launch()
# ---------------------------------------------------------
# 5. GRADIO INTERFACE
# ---------------------------------------------------------
iface = gr.Interface(
fn=process_pdf,
inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
outputs=[
gr.File(label="Download JSON Output"),
gr.Textbox(label="Status Log")
],
title="LayoutLMv3 PDF Parser",
description="Upload a document to extract Questions, Options, and Passages into structured JSON.",
flagging_mode="never" # <--- This is the fix (renamed from allow_flagging)
)
if __name__ == "__main__":
iface.launch()