Spaces:
Sleeping
Sleeping
| import json | |
| import argparse | |
| import os | |
| import random | |
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import Dataset, DataLoader, random_split | |
| from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model | |
| from TorchCRF import CRF | |
| from torch.optim import AdamW | |
| from tqdm import tqdm | |
| from sklearn.metrics import precision_recall_fscore_support | |
| # --- Configuration --- | |
| MAX_BBOX_DIMENSION = 1000 | |
| MAX_SHIFT = 30 | |
| AUGMENTATION_FACTOR = 1 | |
| BASE_MODEL_ID = "microsoft/layoutlmv3-base" | |
| # ------------------------- | |
| # Step 1: Preprocessing | |
| # ------------------------- | |
| def preprocess_labelstudio(input_path, output_path): | |
| with open(input_path, "r", encoding="utf-8") as f: | |
| data = json.load(f) | |
| processed = [] | |
| print(f"๐ Starting preprocessing of {len(data)} documents...") | |
| for item in data: | |
| words = item["data"]["original_words"] | |
| bboxes = item["data"]["original_bboxes"] | |
| labels = ["O"] * len(words) | |
| clamped_bboxes = [] | |
| for bbox in bboxes: | |
| x_min, y_min, x_max, y_max = bbox | |
| new_x_min = max(0, min(x_min, 1000)) | |
| new_y_min = max(0, min(y_min, 1000)) | |
| new_x_max = max(0, min(x_max, 1000)) | |
| new_y_max = max(0, min(y_max, 1000)) | |
| if new_x_min > new_x_max: new_x_min = new_x_max | |
| if new_y_min > new_y_max: new_y_min = new_y_max | |
| clamped_bboxes.append([new_x_min, new_y_min, new_x_max, new_y_max]) | |
| if "annotations" in item: | |
| for ann in item["annotations"]: | |
| for res in ann["result"]: | |
| if "value" in res and "labels" in res["value"]: | |
| text = res["value"]["text"] | |
| tag = res["value"]["labels"][0] | |
| text_tokens = text.split() | |
| for i in range(len(words) - len(text_tokens) + 1): | |
| if words[i:i + len(text_tokens)] == text_tokens: | |
| labels[i] = f"B-{tag}" | |
| for j in range(1, len(text_tokens)): | |
| labels[i + j] = f"I-{tag}" | |
| break | |
| processed.append({"tokens": words, "labels": labels, "bboxes": clamped_bboxes}) | |
| with open(output_path, "w", encoding="utf-8") as f: | |
| json.dump(processed, f, indent=2, ensure_ascii=False) | |
| return output_path | |
| # ------------------------- | |
| # Step 1.5: Augmentation | |
| # ------------------------- | |
| def translate_bbox(bbox, shift_x, shift_y): | |
| x_min, y_min, x_max, y_max = bbox | |
| new_x_min = max(0, min(x_min + shift_x, 1000)) | |
| new_y_min = max(0, min(y_min + shift_y, 1000)) | |
| new_x_max = max(0, min(x_max + shift_x, 1000)) | |
| new_y_max = max(0, min(y_max + shift_y, 1000)) | |
| return [new_x_min, new_y_min, new_x_max, new_y_max] | |
| def augment_sample(sample): | |
| shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT) | |
| shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT) | |
| new_sample = sample.copy() | |
| new_sample["bboxes"] = [translate_bbox(b, shift_x, shift_y) for b in sample["bboxes"]] | |
| return new_sample | |
| def augment_and_save_dataset(input_json_path, output_json_path): | |
| with open(input_json_path, 'r', encoding="utf-8") as f: | |
| training_data = json.load(f) | |
| augmented_data = [] | |
| for original_sample in training_data: | |
| augmented_data.append(original_sample) | |
| for _ in range(AUGMENTATION_FACTOR): | |
| augmented_data.append(augment_sample(original_sample)) | |
| with open(output_json_path, 'w', encoding="utf-8") as f: | |
| json.dump(augmented_data, f, indent=2, ensure_ascii=False) | |
| return output_json_path | |
| # ------------------------- | |
| # Step 2: Dataset Class | |
| # ------------------------- | |
| class LayoutDataset(Dataset): | |
| def __init__(self, json_path, tokenizer, label2id, max_len=512): | |
| with open(json_path, "r", encoding="utf-8") as f: | |
| self.data = json.load(f) | |
| self.tokenizer = tokenizer | |
| self.label2id = label2id | |
| self.max_len = max_len | |
| def __len__(self): | |
| return len(self.data) | |
| def __getitem__(self, idx): | |
| item = self.data[idx] | |
| words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"] | |
| encodings = self.tokenizer(words, boxes=bboxes, padding="max_length", truncation=True, max_length=self.max_len, return_tensors="pt") | |
| word_ids = encodings.word_ids(batch_index=0) | |
| label_ids = [] | |
| for word_id in word_ids: | |
| if word_id is None: | |
| label_ids.append(self.label2id["O"]) | |
| else: | |
| label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"])) | |
| encodings["labels"] = torch.tensor(label_ids) | |
| return {key: val.squeeze(0) for key, val in encodings.items()} | |
| # ------------------------- | |
| # Step 3: Model Architecture (Non-Linear Head) | |
| # ------------------------- | |
| class LayoutLMv3CRF(nn.Module): | |
| def __init__(self, num_labels): | |
| super().__init__() | |
| # Initializing from scratch (Base weights only) | |
| print(f"๐ Initializing backbone from {BASE_MODEL_ID}...") | |
| self.layoutlm = LayoutLMv3Model.from_pretrained(BASE_MODEL_ID) | |
| hidden_size = self.layoutlm.config.hidden_size | |
| # NON-LINEAR MLP HEAD | |
| # Replacing the simple Linear layer with a deeper architecture | |
| self.classifier = nn.Sequential( | |
| nn.Linear(hidden_size, hidden_size), | |
| nn.GELU(), # Non-linear activation | |
| nn.LayerNorm(hidden_size), # Stability for training from scratch | |
| nn.Dropout(0.1), | |
| nn.Linear(hidden_size, num_labels) | |
| ) | |
| self.crf = CRF(num_labels) | |
| def forward(self, input_ids, bbox, attention_mask, labels=None): | |
| outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask) | |
| sequence_output = outputs.last_hidden_state | |
| # Pass through the new non-linear head | |
| emissions = self.classifier(sequence_output) | |
| if labels is not None: | |
| log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool()) | |
| return -log_likelihood.mean() | |
| else: | |
| return self.crf.viterbi_decode(emissions, mask=attention_mask.bool()) | |
| # ------------------------- | |
| # Step 4: Training + Evaluation | |
| # ------------------------- | |
| def train_one_epoch(model, dataloader, optimizer, device): | |
| model.train() | |
| total_loss = 0 | |
| for batch in tqdm(dataloader, desc="Training"): | |
| batch = {k: v.to(device) for k, v in batch.items()} | |
| labels = batch.pop("labels") | |
| optimizer.zero_grad() | |
| loss = model(**batch, labels=labels) | |
| loss.backward() | |
| optimizer.step() | |
| total_loss += loss.item() | |
| return total_loss / len(dataloader) | |
| def evaluate(model, dataloader, device, id2label): | |
| model.eval() | |
| all_preds, all_labels = [], [] | |
| with torch.no_grad(): | |
| for batch in tqdm(dataloader, desc="Evaluating"): | |
| batch = {k: v.to(device) for k, v in batch.items()} | |
| labels = batch.pop("labels").cpu().numpy() | |
| preds = model(**batch) | |
| for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()): | |
| valid = mask == 1 | |
| l_valid = l[valid].tolist() | |
| all_labels.extend(l_valid) | |
| all_preds.extend(p[:len(l_valid)]) | |
| precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0) | |
| return precision, recall, f1 | |
| # ------------------------- | |
| # Step 5: Main Execution | |
| # ------------------------- | |
| def main(args): | |
| labels = ["O", "B-QUESTION", "I-QUESTION", "B-OPTION", "I-OPTION", "B-ANSWER", "I-ANSWER", "B-SECTION_HEADING", "I-SECTION_HEADING", "B-PASSAGE", "I-PASSAGE"] | |
| label2id = {l: i for i, l in enumerate(labels)} | |
| id2label = {i: l for l, i in label2id.items()} | |
| TEMP_DIR = "temp_intermediate_files" | |
| os.makedirs(TEMP_DIR, exist_ok=True) | |
| # 1. Preprocess & Augment | |
| initial_json = os.path.join(TEMP_DIR, "data_bio.json") | |
| preprocess_labelstudio(args.input, initial_json) | |
| augmented_json = os.path.join(TEMP_DIR, "data_aug.json") | |
| final_data_path = augment_and_save_dataset(initial_json, augmented_json) | |
| # 2. Setup Data | |
| tokenizer = LayoutLMv3TokenizerFast.from_pretrained(BASE_MODEL_ID) | |
| dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len) | |
| val_size = int(0.2 * len(dataset)) | |
| train_dataset, val_dataset = random_split(dataset, [len(dataset) - val_size, val_size]) | |
| train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) | |
| val_loader = DataLoader(val_dataset, batch_size=args.batch_size) | |
| # 3. Model | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = LayoutLMv3CRF(num_labels=len(labels)).to(device) | |
| optimizer = AdamW(model.parameters(), lr=args.lr) | |
| # 4. Loop | |
| for epoch in range(args.epochs): | |
| loss = train_one_epoch(model, train_loader, optimizer, device) | |
| p, r, f1 = evaluate(model, val_loader, device, id2label) | |
| print(f"Epoch {epoch+1} | Loss: {loss:.4f} | F1: {f1:.3f}") | |
| ckpt_path = "checkpoints/layoutlmv3_nonlinear_scratch.pth" | |
| os.makedirs("checkpoints", exist_ok=True) | |
| torch.save(model.state_dict(), ckpt_path) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--mode", type=str, default="train") | |
| parser.add_argument("--input", type=str, required=True) | |
| parser.add_argument("--batch_size", type=int, default=4) | |
| parser.add_argument("--epochs", type=int, default=10) # Increased for scratch training | |
| parser.add_argument("--lr", type=float, default=2e-5) | |
| parser.add_argument("--max_len", type=int, default=512) | |
| args = parser.parse_args() | |
| main(args) |