MLP_LayoutLMTrain / train.py
heerjtdev's picture
Rename Data_augmentation.py to train.py
27b7a20 verified
import json
import argparse
import os
import random
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
from TorchCRF import CRF
from torch.optim import AdamW
from tqdm import tqdm
from sklearn.metrics import precision_recall_fscore_support
# --- Configuration ---
MAX_BBOX_DIMENSION = 1000
MAX_SHIFT = 30
AUGMENTATION_FACTOR = 1
BASE_MODEL_ID = "microsoft/layoutlmv3-base"
# -------------------------
# Step 1: Preprocessing
# -------------------------
def preprocess_labelstudio(input_path, output_path):
with open(input_path, "r", encoding="utf-8") as f:
data = json.load(f)
processed = []
print(f"๐Ÿ”„ Starting preprocessing of {len(data)} documents...")
for item in data:
words = item["data"]["original_words"]
bboxes = item["data"]["original_bboxes"]
labels = ["O"] * len(words)
clamped_bboxes = []
for bbox in bboxes:
x_min, y_min, x_max, y_max = bbox
new_x_min = max(0, min(x_min, 1000))
new_y_min = max(0, min(y_min, 1000))
new_x_max = max(0, min(x_max, 1000))
new_y_max = max(0, min(y_max, 1000))
if new_x_min > new_x_max: new_x_min = new_x_max
if new_y_min > new_y_max: new_y_min = new_y_max
clamped_bboxes.append([new_x_min, new_y_min, new_x_max, new_y_max])
if "annotations" in item:
for ann in item["annotations"]:
for res in ann["result"]:
if "value" in res and "labels" in res["value"]:
text = res["value"]["text"]
tag = res["value"]["labels"][0]
text_tokens = text.split()
for i in range(len(words) - len(text_tokens) + 1):
if words[i:i + len(text_tokens)] == text_tokens:
labels[i] = f"B-{tag}"
for j in range(1, len(text_tokens)):
labels[i + j] = f"I-{tag}"
break
processed.append({"tokens": words, "labels": labels, "bboxes": clamped_bboxes})
with open(output_path, "w", encoding="utf-8") as f:
json.dump(processed, f, indent=2, ensure_ascii=False)
return output_path
# -------------------------
# Step 1.5: Augmentation
# -------------------------
def translate_bbox(bbox, shift_x, shift_y):
x_min, y_min, x_max, y_max = bbox
new_x_min = max(0, min(x_min + shift_x, 1000))
new_y_min = max(0, min(y_min + shift_y, 1000))
new_x_max = max(0, min(x_max + shift_x, 1000))
new_y_max = max(0, min(y_max + shift_y, 1000))
return [new_x_min, new_y_min, new_x_max, new_y_max]
def augment_sample(sample):
shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
new_sample = sample.copy()
new_sample["bboxes"] = [translate_bbox(b, shift_x, shift_y) for b in sample["bboxes"]]
return new_sample
def augment_and_save_dataset(input_json_path, output_json_path):
with open(input_json_path, 'r', encoding="utf-8") as f:
training_data = json.load(f)
augmented_data = []
for original_sample in training_data:
augmented_data.append(original_sample)
for _ in range(AUGMENTATION_FACTOR):
augmented_data.append(augment_sample(original_sample))
with open(output_json_path, 'w', encoding="utf-8") as f:
json.dump(augmented_data, f, indent=2, ensure_ascii=False)
return output_json_path
# -------------------------
# Step 2: Dataset Class
# -------------------------
class LayoutDataset(Dataset):
def __init__(self, json_path, tokenizer, label2id, max_len=512):
with open(json_path, "r", encoding="utf-8") as f:
self.data = json.load(f)
self.tokenizer = tokenizer
self.label2id = label2id
self.max_len = max_len
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
encodings = self.tokenizer(words, boxes=bboxes, padding="max_length", truncation=True, max_length=self.max_len, return_tensors="pt")
word_ids = encodings.word_ids(batch_index=0)
label_ids = []
for word_id in word_ids:
if word_id is None:
label_ids.append(self.label2id["O"])
else:
label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
encodings["labels"] = torch.tensor(label_ids)
return {key: val.squeeze(0) for key, val in encodings.items()}
# -------------------------
# Step 3: Model Architecture (Non-Linear Head)
# -------------------------
class LayoutLMv3CRF(nn.Module):
def __init__(self, num_labels):
super().__init__()
# Initializing from scratch (Base weights only)
print(f"๐Ÿ”„ Initializing backbone from {BASE_MODEL_ID}...")
self.layoutlm = LayoutLMv3Model.from_pretrained(BASE_MODEL_ID)
hidden_size = self.layoutlm.config.hidden_size
# NON-LINEAR MLP HEAD
# Replacing the simple Linear layer with a deeper architecture
self.classifier = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.GELU(), # Non-linear activation
nn.LayerNorm(hidden_size), # Stability for training from scratch
nn.Dropout(0.1),
nn.Linear(hidden_size, num_labels)
)
self.crf = CRF(num_labels)
def forward(self, input_ids, bbox, attention_mask, labels=None):
outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
sequence_output = outputs.last_hidden_state
# Pass through the new non-linear head
emissions = self.classifier(sequence_output)
if labels is not None:
log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
return -log_likelihood.mean()
else:
return self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
# -------------------------
# Step 4: Training + Evaluation
# -------------------------
def train_one_epoch(model, dataloader, optimizer, device):
model.train()
total_loss = 0
for batch in tqdm(dataloader, desc="Training"):
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch.pop("labels")
optimizer.zero_grad()
loss = model(**batch, labels=labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
def evaluate(model, dataloader, device, id2label):
model.eval()
all_preds, all_labels = [], []
with torch.no_grad():
for batch in tqdm(dataloader, desc="Evaluating"):
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch.pop("labels").cpu().numpy()
preds = model(**batch)
for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
valid = mask == 1
l_valid = l[valid].tolist()
all_labels.extend(l_valid)
all_preds.extend(p[:len(l_valid)])
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
return precision, recall, f1
# -------------------------
# Step 5: Main Execution
# -------------------------
def main(args):
labels = ["O", "B-QUESTION", "I-QUESTION", "B-OPTION", "I-OPTION", "B-ANSWER", "I-ANSWER", "B-SECTION_HEADING", "I-SECTION_HEADING", "B-PASSAGE", "I-PASSAGE"]
label2id = {l: i for i, l in enumerate(labels)}
id2label = {i: l for l, i in label2id.items()}
TEMP_DIR = "temp_intermediate_files"
os.makedirs(TEMP_DIR, exist_ok=True)
# 1. Preprocess & Augment
initial_json = os.path.join(TEMP_DIR, "data_bio.json")
preprocess_labelstudio(args.input, initial_json)
augmented_json = os.path.join(TEMP_DIR, "data_aug.json")
final_data_path = augment_and_save_dataset(initial_json, augmented_json)
# 2. Setup Data
tokenizer = LayoutLMv3TokenizerFast.from_pretrained(BASE_MODEL_ID)
dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
val_size = int(0.2 * len(dataset))
train_dataset, val_dataset = random_split(dataset, [len(dataset) - val_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
# 3. Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LayoutLMv3CRF(num_labels=len(labels)).to(device)
optimizer = AdamW(model.parameters(), lr=args.lr)
# 4. Loop
for epoch in range(args.epochs):
loss = train_one_epoch(model, train_loader, optimizer, device)
p, r, f1 = evaluate(model, val_loader, device, id2label)
print(f"Epoch {epoch+1} | Loss: {loss:.4f} | F1: {f1:.3f}")
ckpt_path = "checkpoints/layoutlmv3_nonlinear_scratch.pth"
os.makedirs("checkpoints", exist_ok=True)
torch.save(model.state_dict(), ckpt_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--mode", type=str, default="train")
parser.add_argument("--input", type=str, required=True)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--epochs", type=int, default=10) # Increased for scratch training
parser.add_argument("--lr", type=float, default=2e-5)
parser.add_argument("--max_len", type=int, default=512)
args = parser.parse_args()
main(args)