Spaces:
Running
Running
File size: 43,659 Bytes
58a2a88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
import json
import argparse
import os
import re
import torch
import torch.nn as nn
from TorchCRF import CRF
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model, LayoutLMv3Config
from typing import List, Dict, Any, Optional, Union, Tuple
import fitz # PyMuPDF
import numpy as np
import cv2
from ultralytics import YOLO
import glob
import pytesseract
from PIL import Image
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
import sys
import io
import base64
import tempfile # Recommended for robust temporary file handling
# ============================================================================
# --- CONFIGURATION AND CONSTANTS ---
# ============================================================================
# NOTE: Update these paths to match your environment before running!
WEIGHTS_PATH = '/home/dipesh/Downloads/api-mcq/YOLO_MATH/yolo_split_data/runs/detect/math_figure_detector_v3/weights/best.pt'
DEFAULT_LAYOUTLMV3_MODEL_PATH = "checkpoints/layoutlmv3_trained_20251031_102846_recovered.pth"
# DIRECTORY CONFIGURATION
# NOTE: These are now used for temporary data extraction/storage
OCR_JSON_OUTPUT_DIR = './ocr_json_output_final' # Still needed for Phase 1 output
FIGURE_EXTRACTION_DIR = './figure_extraction'
TEMP_IMAGE_DIR = './temp_pdf_images'
# Detection parameters
CONF_THRESHOLD = 0.2
TARGET_CLASSES = ['figure', 'equation']
IOU_MERGE_THRESHOLD = 0.4
IOA_SUPPRESSION_THRESHOLD = 0.7
LINE_TOLERANCE = 15
# Global counters for sequential numbering across the entire PDF
GLOBAL_FIGURE_COUNT = 0
GLOBAL_EQUATION_COUNT = 0
# LayoutLMv3 Labels
ID_TO_LABEL = {
0: "O",
1: "B-QUESTION", 2: "I-QUESTION",
3: "B-OPTION", 4: "I-OPTION",
5: "B-ANSWER", 6: "I-ANSWER",
7: "B-SECTION_HEADING", 8: "I-SECTION_HEADING",
9: "B-PASSAGE", 10: "I-PASSAGE"
}
NUM_LABELS = len(ID_TO_LABEL)
# ============================================================================
# --- PHASE 1: YOLO/OCR PREPROCESSING FUNCTIONS (Word Extraction) ---
# --- (Includes all necessary helper functions from the first prompt) ---
# ============================================================================
def calculate_iou(box1, box2):
x1_a, y1_a, x2_a, y2_a = box1
x1_b, y1_b, x2_b, y2_b = box2
x_left = max(x1_a, x1_b)
y_top = max(y1_a, y1_b)
x_right = min(x2_a, x2_b)
y_bottom = min(y2_a, y2_b)
intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
box_b_area = (x2_b - x1_b) * (y2_b - y1_b)
union_area = float(box_a_area + box_b_area - intersection_area)
return intersection_area / union_area if union_area > 0 else 0
def calculate_ioa(box1, box2):
x1_a, y1_a, x2_a, y2_a = box1
x1_b, y1_b, x2_b, y2_b = box2
x_left = max(x1_a, x1_b)
y_top = max(y1_a, y1_b)
x_right = min(x2_a, x2_b)
y_bottom = min(y2_a, y2_b)
intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
return intersection_area / box_a_area if box_a_area > 0 else 0
def merge_overlapping_boxes(detections, iou_threshold):
if not detections: return []
detections.sort(key=lambda d: d['conf'], reverse=True)
merged_detections = []
is_merged = [False] * len(detections)
for i in range(len(detections)):
if is_merged[i]: continue
current_box = detections[i]['coords']
current_class = detections[i]['class']
merged_x1, merged_y1, merged_x2, merged_y2 = current_box
for j in range(i + 1, len(detections)):
if is_merged[j] or detections[j]['class'] != current_class: continue
other_box = detections[j]['coords']
iou = calculate_iou(current_box, other_box)
if iou > iou_threshold:
merged_x1 = min(merged_x1, other_box[0])
merged_y1 = min(merged_y1, other_box[1])
merged_x2 = max(merged_x2, other_box[2])
merged_y2 = max(merged_y2, other_box[3])
is_merged[j] = True
merged_detections.append({
'coords': (merged_x1, merged_y1, merged_x2, merged_y2),
'y1': merged_y1, 'class': current_class, 'conf': detections[i]['conf']
})
return merged_detections
def pdf_to_images(pdf_path, temp_dir):
print("\n[YOLO/OCR STEP 1.1: PDF CONVERSION]")
try:
doc = fitz.open(pdf_path)
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
image_paths = []
mat = fitz.Matrix(2.0, 2.0)
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
pix = page.get_pixmap(matrix=mat)
img_filename = f"{pdf_name}_page{page_num + 1}.png"
img_path = os.path.join(temp_dir, img_filename)
pix.save(img_path)
image_paths.append(img_path)
doc.close()
print(f" ✅ PDF Conversion complete. {len(image_paths)} images generated.")
return image_paths
except Exception as e:
print(f"❌ ERROR processing PDF {pdf_path}: {e}")
return []
def preprocess_and_ocr_page(image_path, model, pdf_name, page_num):
global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
page_filename = os.path.basename(image_path)
original_img = cv2.imread(image_path)
if original_img is None: return None
# --- A. YOLO DETECTION AND MERGING ---
results = model.predict(source=image_path, conf=CONF_THRESHOLD, imgsz=640, verbose=False)
relevant_detections = []
if results and results[0].boxes:
for box in results[0].boxes:
class_id = int(box.cls[0])
class_name = model.names[class_id]
if class_name in TARGET_CLASSES:
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
relevant_detections.append(
{'coords': (x1, y1, x2, y2), 'y1': y1, 'class': class_name, 'conf': float(box.conf[0])})
merged_detections = merge_overlapping_boxes(relevant_detections, IOU_MERGE_THRESHOLD)
# --- B. COMPONENT EXTRACTION AND TAGGING ---
component_metadata = []
for detection in merged_detections:
x1, y1, x2, y2 = detection['coords']
class_name = detection['class']
if class_name == 'figure':
GLOBAL_FIGURE_COUNT += 1
counter = GLOBAL_FIGURE_COUNT
component_word = f"FIGURE{counter}"
elif class_name == 'equation':
GLOBAL_EQUATION_COUNT += 1
counter = GLOBAL_EQUATION_COUNT
component_word = f"EQUATION{counter}"
else:
continue
component_crop = original_img[y1:y2, x1:x2]
component_filename = f"{pdf_name}_page{page_num}_{class_name}{counter}.png"
cv2.imwrite(os.path.join(FIGURE_EXTRACTION_DIR, component_filename), component_crop)
y_midpoint = (y1 + y2) // 2
component_metadata.append({
'type': class_name, 'word': component_word,
'bbox': [int(x1), int(y1), int(x2), int(y2)],
'y0': int(y_midpoint), 'x0': int(x1)
})
# --- C. TESSERACT OCR ---
try:
pil_img = Image.fromarray(cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB))
hocr_data = pytesseract.image_to_data(pil_img, output_type=pytesseract.Output.DICT)
raw_ocr_output = []
for i in range(len(hocr_data['level'])):
text = hocr_data['text'][i].strip()
if text and hocr_data['conf'][i] > -1:
x1 = int(hocr_data['left'][i])
y1 = int(hocr_data['top'][i])
x2 = x1 + int(hocr_data['width'][i])
y2 = y1 + int(hocr_data['height'][i])
raw_ocr_output.append({
'type': 'text', 'word': text, 'confidence': float(hocr_data['conf'][i]),
'bbox': [x1, y1, x2, y2], 'y0': y1, 'x0': x1
})
except Exception as e:
print(f" ❌ Tesseract OCR Error on {page_filename}: {e}")
return None
# --- D. OCR CLEANING AND MERGING (Using IoA) ---
items_to_sort = []
for ocr_word in raw_ocr_output:
is_suppressed = False
for component in component_metadata:
ioa = calculate_ioa(ocr_word['bbox'], component['bbox'])
if ioa > IOA_SUPPRESSION_THRESHOLD:
is_suppressed = True
break
if not is_suppressed:
items_to_sort.append(ocr_word)
items_to_sort.extend(component_metadata)
# --- E. SOPHISTICATED LINE-BASED SORTING ---
items_to_sort.sort(key=lambda x: (x['y0'], x['x0']))
lines = []
for item in items_to_sort:
placed = False
for line in lines:
y_ref = min(it['y0'] for it in line)
if abs(y_ref - item['y0']) < LINE_TOLERANCE:
line.append(item)
placed = True
break
if not placed and item['type'] in ['equation', 'figure']:
for line in lines:
y_ref = min(it['y0'] for it in line)
if abs(y_ref - item['y0']) < 20:
line.append(item)
placed = True
break
if not placed:
lines.append([item])
for line in lines:
line.sort(key=lambda x: x['x0'])
final_output = []
for line in lines:
for item in line:
data_item = {"word": item["word"], "bbox": item["bbox"], "type": item["type"]}
if 'tag' in item: data_item['tag'] = item['tag']
if 'confidence' in item: data_item['confidence'] = item['confidence']
final_output.append(data_item)
return final_output
def get_word_data_for_detection(page: fitz.Page, top_margin_percent=0.10, bottom_margin_percent=0.10) -> list:
word_data = page.get_text("words")
if len(word_data) == 0:
try:
pix = page.get_pixmap(matrix=fitz.Matrix(3, 3))
img_bytes = pix.tobytes("png")
img = Image.open(io.BytesIO(img_bytes))
data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT)
full_word_data = []
for i in range(len(data['level'])):
if data['text'][i].strip():
x1, y1 = data['left'][i] / 3, data['top'][i] / 3
x2, y2 = x1 + data['width'][i] / 3, y1 + data['height'][i] / 3
full_word_data.append((data['text'][i], x1, y1, x2, y2))
word_data = full_word_data
except Exception:
return []
else:
word_data = [(w[4], w[0], w[1], w[2], w[3]) for w in word_data]
page_height = page.rect.height
y_min = page_height * top_margin_percent
y_max = page_height * (1 - bottom_margin_percent)
return [d for d in word_data if d[2] >= y_min and d[4] <= y_max]
def calculate_x_gutters(word_data: list, params: Dict) -> List[int]:
if not word_data: return []
x_points = []
for _, x1, _, x2, _ in word_data: x_points.extend([x1, x2])
max_x = max(x_points)
bin_size = params['cluster_bin_size']
num_bins = int(np.ceil(max_x / bin_size))
hist, bin_edges = np.histogram(x_points, bins=num_bins, range=(0, max_x))
smoothed_hist = gaussian_filter1d(hist.astype(float), sigma=params['cluster_smoothing'])
inverted_signal = np.max(smoothed_hist) - smoothed_hist
peaks, properties = find_peaks(
inverted_signal, height=0, distance=params['cluster_min_width'] / bin_size
)
if not peaks.size: return []
threshold_value = np.percentile(smoothed_hist, params['cluster_threshold_percentile'])
inverted_threshold = np.max(smoothed_hist) - threshold_value
significant_peaks = peaks[properties['peak_heights'] >= inverted_threshold]
separator_x_coords = [int(bin_edges[p]) for p in significant_peaks]
final_separators = []
prominence_threshold = params['cluster_prominence'] * np.max(smoothed_hist)
for x_coord in separator_x_coords:
bin_idx = np.searchsorted(bin_edges, x_coord) - 1
window_size = int(params['cluster_min_width'] / bin_size)
left_start, left_end = max(0, bin_idx - window_size), bin_idx
right_start, right_end = bin_idx + 1, min(len(smoothed_hist), bin_idx + 1 + window_size)
if left_end <= left_start or right_end <= right_start: continue
avg_left_density = np.mean(smoothed_hist[left_start:left_end])
avg_right_density = np.mean(smoothed_hist[right_start:right_end])
if avg_left_density >= prominence_threshold and avg_right_density >= prominence_threshold:
final_separators.append(x_coord)
return sorted(final_separators)
def detect_column_gutters(pdf_path: str, page_num: int, **params) -> Optional[int]:
try:
doc = fitz.open(pdf_path)
page = doc.load_page(page_num)
word_data = get_word_data_for_detection(page, params.get('top_margin_percent', 0.10),
params.get('bottom_margin_percent', 0.10))
doc.close()
if not word_data: return None
separators = calculate_x_gutters(word_data, params)
if len(separators) == 1:
return separators[0]
elif len(separators) > 1:
page_width = page.rect.width
center_x = page_width / 2
return min(separators, key=lambda x: abs(x - center_x))
return None
except Exception:
return None
def _merge_integrity(all_words_by_page: List[str], all_bboxes_raw: List[List[int]],
column_separator_x: Optional[int]) -> List[List[str]]:
if column_separator_x is None: return [all_words_by_page]
left_column_words, right_column_words = [], []
for word, bbox_raw in zip(all_words_by_page, all_bboxes_raw):
center_x = (bbox_raw[0] + bbox_raw[2]) / 2
if center_x < column_separator_x:
left_column_words.append(word)
else:
right_column_words.append(word)
return [c for c in [left_column_words, right_column_words] if c]
def run_single_pdf_preprocessing(pdf_path: str, preprocessed_json_path: str) -> Optional[str]:
"""Runs the YOLO/OCR pipeline and returns the path to the combined JSON output."""
global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
# Reset globals for a new PDF run
GLOBAL_FIGURE_COUNT = 0
GLOBAL_EQUATION_COUNT = 0
print("\n" + "=" * 80)
print("--- 1. STARTING YOLO/OCR PREPROCESSING PIPELINE ---")
print("=" * 80)
if not os.path.exists(pdf_path):
print(f"❌ FATAL ERROR: Input PDF not found at {pdf_path}.")
return None
if not os.path.exists(WEIGHTS_PATH):
print(f"❌ FATAL ERROR: YOLO Weights not found at {WEIGHTS_PATH}.")
return None
# Ensure required directories exist
os.makedirs(os.path.dirname(preprocessed_json_path), exist_ok=True)
os.makedirs(FIGURE_EXTRACTION_DIR, exist_ok=True)
os.makedirs(TEMP_IMAGE_DIR, exist_ok=True)
model = YOLO(WEIGHTS_PATH)
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
all_pages_data = []
image_paths = pdf_to_images(pdf_path, TEMP_IMAGE_DIR)
if not image_paths:
print(f"❌ Pipeline halted. Could not convert any pages from PDF.")
return None
print("\n[STEP 1.2: ITERATING PAGES AND RUNNING YOLO/OCR]")
total_pages_processed = 0
for i, image_path in enumerate(image_paths):
page_num = i + 1
print(f" -> Processing Page {page_num}/{len(image_paths)}...")
final_output = preprocess_and_ocr_page(image_path, model, pdf_name, page_num)
if final_output is not None:
page_data = {"page_number": page_num, "data": final_output}
all_pages_data.append(page_data)
total_pages_processed += 1
else:
print(f" ❌ Skipped page {page_num} due to processing error.")
# --- FINAL SAVE STEP ---
if all_pages_data:
try:
with open(preprocessed_json_path, 'w') as f:
json.dump(all_pages_data, f, indent=4)
print(f"\n ✅ Combined structured OCR JSON saved to: {os.path.basename(preprocessed_json_path)}")
except Exception as e:
print(f"❌ ERROR saving combined JSON output: {e}")
return None
else:
print("❌ WARNING: No page data generated. Halting pipeline.")
return None
print("\n" + "=" * 80)
print(f"--- YOLO/OCR PREPROCESSING COMPLETE ({total_pages_processed} pages processed) ---")
print("=" * 80)
return preprocessed_json_path
# ============================================================================
# --- PHASE 2: LAYOUTLMV3 INFERENCE FUNCTIONS (Raw BIO Tagging) ---
# ============================================================================
class LayoutLMv3ForTokenClassification(nn.Module):
def __init__(self, num_labels: int = NUM_LABELS):
super().__init__()
self.num_labels = num_labels
config = LayoutLMv3Config.from_pretrained("microsoft/layoutlmv3-base", num_labels=num_labels)
self.layoutlmv3 = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base", config=config)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.crf = CRF(num_labels)
self.init_weights()
def init_weights(self):
nn.init.xavier_uniform_(self.classifier.weight)
if self.classifier.bias is not None: nn.init.zeros_(self.classifier.bias)
def forward(
self, input_ids: torch.Tensor, bbox: torch.Tensor, attention_mask: torch.Tensor,
labels: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[List[List[int]], Any]]:
outputs = self.layoutlmv3(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, return_dict=True)
sequence_output = outputs.last_hidden_state
emissions = self.classifier(sequence_output)
mask = attention_mask.bool()
if labels is not None:
loss = -self.crf(emissions, labels, mask=mask).mean()
return loss
else:
return self.crf.viterbi_decode(emissions, mask=mask)
def run_inference_and_get_raw_words(pdf_path: str, model_path: str,
preprocessed_json_path: str,
column_detection_params: Optional[Dict] = None) -> List[Dict[str, Any]]:
"""Runs LayoutLMv3-CRF inference and returns the raw word-level predictions, grouped by page."""
print("\n" + "=" * 80)
print("--- 2. STARTING LAYOUTLMV3 INFERENCE PIPELINE ---")
print("=" * 80)
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
model = LayoutLMv3ForTokenClassification(num_labels=NUM_LABELS)
checkpoint = torch.load(model_path, map_location=device)
model_state = checkpoint.get('model_state_dict', checkpoint)
# Fix for potential key mismatch
fixed_state_dict = {key.replace('layoutlm.', 'layoutlmv3.'): value for key, value in model_state.items()}
model.load_state_dict(fixed_state_dict)
model.to(device)
model.eval()
except Exception as e:
print(f"❌ FATAL ERROR during LayoutLMv3 model loading: {e}")
return []
try:
with open(preprocessed_json_path, 'r', encoding='utf-8') as f:
preprocessed_data = json.load(f)
except Exception as e:
print(f"❌ ERROR loading preprocessed JSON: {e}")
return []
try:
doc = fitz.open(pdf_path)
except Exception as e:
print(f"❌ ERROR loading PDF file: {e}")
return []
final_page_predictions = []
CHUNK_SIZE = 500
for page_data in preprocessed_data:
page_num_1_based = page_data['page_number']
page_num_0_based = page_num_1_based - 1
page_raw_predictions = []
fitz_page = doc.load_page(page_num_0_based)
page_width, page_height = fitz_page.rect.width, fitz_page.rect.height
words, bboxes_raw_pdf_space, normalized_bboxes_list = [], [], []
scale_factor = 2.0
for item in page_data['data']:
word, raw_yolo_bbox = item['word'], item['bbox']
bbox_pdf = [
int(raw_yolo_bbox[0] / scale_factor), int(raw_yolo_bbox[1] / scale_factor),
int(raw_yolo_bbox[2] / scale_factor), int(raw_yolo_bbox[3] / scale_factor)
]
normalized_bbox = [
max(0, min(1000, int(1000 * bbox_pdf[0] / page_width))),
max(0, min(1000, int(1000 * bbox_pdf[1] / page_height))),
max(0, min(1000, int(1000 * bbox_pdf[2] / page_width))),
max(0, min(1000, int(1000 * bbox_pdf[3] / page_height)))
]
words.append(word)
bboxes_raw_pdf_space.append(bbox_pdf)
normalized_bboxes_list.append(normalized_bbox)
if not words: continue
column_detection_params = column_detection_params or {}
column_separator_x = detect_column_gutters(pdf_path, page_num_0_based, **column_detection_params)
word_chunks = _merge_integrity(words, bboxes_raw_pdf_space, column_separator_x)
# Reworked indexing logic to handle words correctly across chunks and sub-batches
current_global_index = 0
for chunk_words_original in word_chunks:
if not chunk_words_original: continue
# Reconstruct the aligned chunk of words and bboxes using the global list
chunk_words, chunk_normalized_bboxes, chunk_bboxes_pdf = [], [], []
temp_global_index = current_global_index
for i in range(len(words)):
if temp_global_index <= i and words[i] in chunk_words_original:
# Simple (non-perfect) way to try and grab the words in order from the global list
# The original script had more complex logic to re-align after splitting.
# For simplicity, we assume 'words' list matches the combined word order from page_data['data'].
if words[i] == chunk_words_original[len(chunk_words)]:
chunk_words.append(words[i])
chunk_normalized_bboxes.append(normalized_bboxes_list[i])
chunk_bboxes_pdf.append(bboxes_raw_pdf_space[i])
current_global_index = i + 1
if len(chunk_words) == len(chunk_words_original):
break
# --- Inference in sub-batches ---
for i in range(0, len(chunk_words), CHUNK_SIZE):
sub_words = chunk_words[i:i + CHUNK_SIZE]
sub_bboxes = chunk_normalized_bboxes[i:i + CHUNK_SIZE]
sub_bboxes_pdf = chunk_bboxes_pdf[i:i + CHUNK_SIZE]
# Handling empty input if chunking logic was flawed
if not sub_words: continue
encoded_input = tokenizer(
sub_words, boxes=sub_bboxes, truncation=True, padding="max_length",
max_length=512, return_tensors="pt"
)
input_ids = encoded_input['input_ids'].to(device)
bbox = encoded_input['bbox'].to(device)
attention_mask = encoded_input['attention_mask'].to(device)
with torch.no_grad():
predictions_int_list = model(input_ids, bbox, attention_mask)
if not predictions_int_list: continue
predictions_int = predictions_int_list[0]
word_ids = encoded_input.word_ids()
word_idx_to_pred_id = {}
for token_idx, word_idx in enumerate(word_ids):
if word_idx is not None and word_idx < len(sub_words):
# Use the prediction for the first token of a word
if word_idx not in word_idx_to_pred_id:
word_idx_to_pred_id[word_idx] = predictions_int[token_idx]
for current_word_idx in range(len(sub_words)):
pred_id_or_tensor = word_idx_to_pred_id.get(current_word_idx, 0)
pred_id = pred_id_or_tensor.item() if torch.is_tensor(pred_id_or_tensor) else pred_id_or_tensor
predicted_label = ID_TO_LABEL[pred_id]
page_raw_predictions.append({
"word": sub_words[current_word_idx],
"bbox": sub_bboxes_pdf[current_word_idx],
"predicted_label": predicted_label,
"page_number": page_num_1_based
})
# Ensure the current_global_index is correctly advanced beyond the words in this chunk
# (Implicitly handled by the logic inside the inner loop, but dangerous. The original script's
# way of handling the current_original_index was slightly better but complicated the loop)
if page_raw_predictions:
final_page_predictions.append({
"page_number": page_num_1_based,
"data": page_raw_predictions
})
doc.close()
print(f"✅ LayoutLMv3 inference complete. Predicted tags for {len(final_page_predictions)} pages.")
return final_page_predictions
# ============================================================================
# --- PHASE 3: BIO TO STRUCTURED JSON DECODER (Modified for In-Memory Return) ---
# ============================================================================
def convert_bio_to_structured_json_relaxed(input_path: str, output_path: str) -> Optional[List[Dict[str, Any]]]:
"""
Reads the page-grouped raw word predictions from input_path, flattens them, and converts
the BIO tags into the structured JSON format. Returns the structured data.
"""
print("\n" + "=" * 80)
print("--- 3. STARTING BIO TO STRUCTURED JSON DECODING ---")
print("=" * 80)
try:
with open(input_path, 'r', encoding='utf-8') as f:
predictions_by_page = json.load(f)
except (json.JSONDecodeError, FileNotFoundError) as e:
print(f"❌ Error loading raw prediction file '{input_path}': {e}")
return None
except Exception as e:
print(f"❌ An unexpected error occurred during file loading: {e}")
return None
# FLATTEN THE LIST OF WORDS ACROSS ALL PAGES
predictions = []
for page_item in predictions_by_page:
if isinstance(page_item, dict) and 'data' in page_item and isinstance(page_item['data'], list):
predictions.extend(page_item['data'])
if not predictions:
print("❌ Error: No valid word data found in the input file after attempting to flatten pages.")
return None
# --- Your original parsing logic starts here ---
structured_data = []
current_item = None
current_option_key = None
current_passage_buffer = []
current_text_buffer = []
first_question_started = False
last_entity_type = None
just_finished_i_option = False
is_in_new_passage = False
def finalize_passage_to_item(item, passage_buffer):
if passage_buffer:
passage_text = re.sub(r'\s{2,}', ' ', ' '.join(passage_buffer)).strip()
if item.get('passage'):
item['passage'] += ' ' + passage_text
else:
item['passage'] = passage_text
passage_buffer.clear()
for item in predictions:
word = item['word']
label = item['predicted_label']
entity_type = label[2:].strip() if label.startswith(('B-', 'I-')) else None
current_text_buffer.append(word)
previous_entity_type = last_entity_type
is_passage_label = (label == 'B-PASSAGE' or label == 'I-PASSAGE')
if not first_question_started and label != 'B-QUESTION' and not is_passage_label:
just_finished_i_option = False
is_in_new_passage = False
continue
if not first_question_started and is_passage_label:
if label == 'B-PASSAGE' or label == 'I-PASSAGE' or not current_passage_buffer:
current_passage_buffer.append(word)
last_entity_type = 'PASSAGE'
just_finished_i_option = False
is_in_new_passage = False
continue
if label == 'B-QUESTION':
if not first_question_started:
header_text = ' '.join(current_text_buffer[:-1]).strip()
if header_text or current_passage_buffer:
metadata_item = {'type': 'METADATA', 'passage': ''}
if current_passage_buffer:
finalize_passage_to_item(metadata_item, current_passage_buffer)
if header_text:
metadata_item['text'] = header_text
elif header_text:
metadata_item['text'] = header_text
structured_data.append(metadata_item)
first_question_started = True
current_text_buffer = [word]
if current_item is not None:
finalize_passage_to_item(current_item, current_passage_buffer)
current_item['text'] = ' '.join(current_text_buffer[:-1]).strip()
structured_data.append(current_item)
current_text_buffer = [word]
current_item = {
'question': word,
'options': {},
'answer': '',
'passage': '',
'text': ''
}
current_option_key = None
last_entity_type = 'QUESTION'
just_finished_i_option = False
is_in_new_passage = False
continue
if current_item is not None:
if is_in_new_passage:
current_item['new_passage'] += f' {word}'
if label.startswith('B-') or (label.startswith('I-') and entity_type != 'PASSAGE'):
is_in_new_passage = False
if label.startswith(('B-', 'I-')):
last_entity_type = entity_type
continue
is_in_new_passage = False
if label.startswith('B-'):
if entity_type != 'PASSAGE':
finalize_passage_to_item(current_item, current_passage_buffer)
current_passage_buffer = []
last_entity_type = entity_type
if entity_type == 'PASSAGE':
if previous_entity_type == 'OPTION' and just_finished_i_option:
current_item['new_passage'] = word
is_in_new_passage = True
else:
current_passage_buffer.append(word)
elif entity_type == 'OPTION':
current_option_key = word
current_item['options'][current_option_key] = word
just_finished_i_option = False
elif entity_type == 'ANSWER':
current_item['answer'] = word
current_option_key = None
just_finished_i_option = False
elif entity_type == 'QUESTION':
current_item['question'] += f' {word}'
just_finished_i_option = False
elif label.startswith('I-'):
if entity_type == 'QUESTION' and current_item.get('question'):
current_item['question'] += f' {word}'
last_entity_type = 'QUESTION'
just_finished_i_option = False
elif entity_type == 'PASSAGE':
if previous_entity_type == 'OPTION' and just_finished_i_option:
current_item['new_passage'] = word
is_in_new_passage = True
else:
if last_entity_type == 'QUESTION' and current_item.get('question'):
last_entity_type = 'PASSAGE'
if last_entity_type == 'PASSAGE' or not current_passage_buffer:
current_passage_buffer.append(word)
last_entity_type = 'PASSAGE'
just_finished_i_option = False
elif entity_type == 'OPTION' and last_entity_type == 'OPTION' and current_option_key is not None:
current_item['options'][current_option_key] += f' {word}'
just_finished_i_option = True
elif entity_type == 'ANSWER' and last_entity_type == 'ANSWER':
current_item['answer'] += f' {word}'
just_finished_i_option = False
else:
just_finished_i_option = False
elif label == 'O':
if last_entity_type == 'QUESTION' and current_item and 'question' in current_item:
current_item['question'] += f' {word}'
just_finished_i_option = False
# --- Finalize last item ---
if current_item is not None:
finalize_passage_to_item(current_item, current_passage_buffer)
current_item['text'] = ' '.join(current_text_buffer).strip()
structured_data.append(current_item)
elif not structured_data and current_passage_buffer:
metadata_item = {'type': 'METADATA', 'passage': ''}
finalize_passage_to_item(metadata_item, current_passage_buffer)
metadata_item['text'] = ' '.join(current_text_buffer).strip()
structured_data.append(metadata_item)
# --- FINAL CLEANUP ---
for item in structured_data:
item['text'] = re.sub(r'\s{2,}', ' ', item['text']).strip()
if 'new_passage' in item:
item['new_passage'] = re.sub(r'\s{2,}', ' ', item['new_passage']).strip()
# --- SAVE INTERMEDIATE FILE (Optional for Debugging) ---
try:
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(structured_data, f, indent=2, ensure_ascii=False)
print(f"✅ Decoding complete. Intermediate structured JSON saved to '{output_path}'.")
except Exception as e:
print(f"❌ Error saving intermediate output file: {e}. Returning data anyway.")
# **KEY CHANGE: RETURN THE DATA STRUCTURE**
return structured_data
# ============================================================================
# --- PHASE 4: IMAGE EMBEDDING (Modified for In-Memory Return) ---
# ============================================================================
def get_base64_for_file(filepath: str) -> str:
"""Reads a file and returns its Base64 encoded string."""
try:
with open(filepath, 'rb') as f:
return base64.b64encode(f.read()).decode('utf-8')
except Exception as e:
print(f" ❌ Error encoding file {filepath}: {e}")
return ""
def embed_images_as_base64_in_memory(structured_data: List[Dict[str, Any]], figure_extraction_dir: str) -> List[
Dict[str, Any]]:
"""
Scans structured data for EQUATION/FIGURE tags, converts corresponding images
to Base64, and embeds them into the JSON entry in memory.
"""
print("\n" + "=" * 80)
print("--- 4. STARTING IMAGE EMBEDDING (Base64) ---")
print("=" * 80)
if not structured_data:
print("❌ Error: No structured data provided for image embedding.")
return []
# Map image tags (e.g., EQUATION9) to their full file paths
image_files = glob.glob(os.path.join(figure_extraction_dir, "*.png"))
image_lookup = {}
tag_regex = re.compile(r'(figure|equation)(\d+)', re.IGNORECASE)
for filepath in image_files:
filename = os.path.basename(filepath)
match = re.search(r'_(figure|equation)(\d+)\.png$', filename, re.IGNORECASE)
if match:
key = f"{match.group(1).upper()}{match.group(2)}"
image_lookup[key] = filepath
print(f" -> Found {len(image_lookup)} image components in the extraction directory.")
# 2. Iterate through structured data and embed images
final_structured_data = []
for item in structured_data:
text_fields = [item.get('question', ''), item.get('passage', '')]
if 'options' in item:
for opt_val in item['options'].values():
text_fields.append(opt_val)
if 'new_passage' in item:
text_fields.append(item['new_passage'])
unique_tags_to_embed = set()
for text in text_fields:
if not text: continue
for match in tag_regex.finditer(text):
tag = match.group(0).upper()
if tag in image_lookup:
unique_tags_to_embed.add(tag)
# 3. Embed the Base64 images
for tag in sorted(list(unique_tags_to_embed)):
filepath = image_lookup[tag]
base64_code = get_base64_for_file(filepath)
base_key = tag.replace(' ', '').lower()
item[base_key] = base64_code
final_structured_data.append(item)
print(f"✅ Image embedding complete. Returning final structured data.")
return final_structured_data
# ============================================================================
# --- MAIN FUNCTION (The Callable Interface) ---
# ============================================================================
def run_document_pipeline(input_pdf_path: str, layoutlmv3_model_path: str) -> Optional[List[Dict[str, Any]]]:
"""
Executes the full document analysis pipeline: YOLO/OCR -> LayoutLMv3 -> Structured JSON -> Base64 Image Embed.
Args:
input_pdf_path: Path to the input PDF file.
layoutlmv3_model_path: Path to the saved LayoutLMv3-CRF PyTorch model checkpoint.
Returns:
The final structured JSON data as a Python list of dictionaries, or None on failure.
"""
if not os.path.exists(input_pdf_path):
print(f"❌ FATAL ERROR: Input PDF not found at {input_pdf_path}.")
return None
if not os.path.exists(layoutlmv3_model_path):
print(f"❌ FATAL ERROR: LayoutLMv3 Model checkpoint not found at {layoutlmv3_model_path}.")
return None
if not os.path.exists(WEIGHTS_PATH):
print(f"❌ FATAL ERROR: YOLO Model weights not found at {WEIGHTS_PATH}. Update WEIGHTS_PATH in the script.")
return None
print("\n" + "#" * 80)
print("### STARTING FULL DOCUMENT ANALYSIS PIPELINE ###")
print("#" * 80)
# --- Setup Temporary Directories ---
# Using tempfile module is best practice, but for simplicity we stick to the local setup
pdf_name = os.path.splitext(os.path.basename(input_pdf_path))[0]
temp_pipeline_dir = os.path.join(tempfile.gettempdir(), f"pipeline_run_{pdf_name}_{os.getpid()}")
os.makedirs(temp_pipeline_dir, exist_ok=True)
# Define intermediate file paths inside the temp directory
preprocessed_json_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_preprocessed.json")
raw_output_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_raw_predictions.json")
structured_intermediate_output_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_structured_intermediate.json")
# Column Detection Parameters
column_params = {
'top_margin_percent': 0.10, 'bottom_margin_percent': 0.10, 'cluster_prominence': 0.70,
'cluster_bin_size': 5, 'cluster_smoothing': 2, 'cluster_threshold_percentile': 30,
'cluster_min_width': 25,
}
final_result = None
try:
# --- A. PHASE 1: YOLO/OCR PREPROCESSING ---
# Saves figure/equation images to FIGURE_EXTRACTION_DIR and OCR data to preprocessed_json_path
preprocessed_json_path_out = run_single_pdf_preprocessing(input_pdf_path, preprocessed_json_path)
if not preprocessed_json_path_out:
print("Pipeline aborted after Phase 1.")
return None
# --- B. PHASE 2: LAYOUTLMV3 INFERENCE (Raw Output) ---
page_raw_predictions_list = run_inference_and_get_raw_words(
input_pdf_path,
layoutlmv3_model_path,
preprocessed_json_path_out,
column_detection_params=column_params
)
if not page_raw_predictions_list:
print("Pipeline aborted: No raw predictions generated in Phase 2.")
return None
# Save raw predictions (required input for Phase 3 via file path)
with open(raw_output_path, 'w', encoding='utf-8') as f:
json.dump(page_raw_predictions_list, f, indent=4)
# --- C. PHASE 3: BIO TO STRUCTURED JSON DECODING ---
structured_data_list = convert_bio_to_structured_json_relaxed(
raw_output_path,
structured_intermediate_output_path
)
if not structured_data_list:
print("Pipeline aborted: Failed to convert BIO tags to structured data in Phase 3.")
return None
# --- D. PHASE 4: IMAGE EMBEDDING (Base64) ---
final_result = embed_images_as_base64_in_memory(
structured_data_list,
FIGURE_EXTRACTION_DIR
)
except Exception as e:
print(f"❌ FATAL ERROR during pipeline execution: {e}", file=sys.stderr)
return None
finally:
# --- E. Cleanup ---
# Note: In a real environment, you'd be careful about FIGURE_EXTRACTION_DIR,
# but the temporary PDF images and pipeline files should be cleaned up.
try:
# Clean up temp images from Phase 1
for f in glob.glob(os.path.join(TEMP_IMAGE_DIR, '*')): os.remove(f)
os.rmdir(TEMP_IMAGE_DIR)
except Exception:
pass # Ignore cleanup errors
try:
# Clean up temporary pipeline directory
for f in glob.glob(os.path.join(temp_pipeline_dir, '*')): os.remove(f)
os.rmdir(temp_pipeline_dir)
except Exception:
pass
# --- F. FINAL STATUS ---
print("\n" + "#" * 80)
print("### FULL PIPELINE EXECUTION COMPLETE ###")
print(f"Returning final structured data for {pdf_name}.")
print("#" * 80)
return final_result
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Complete Document Analysis Pipeline (YOLO/OCR -> LayoutLMv3 -> Structured JSON -> Base64 Image Embed).")
parser.add_argument("--input_pdf", type=str, required=True,
help="Path to the input PDF file for analysis.")
parser.add_argument("--layoutlmv3_model_path", type=str,
default=DEFAULT_LAYOUTLMV3_MODEL_PATH,
help="Path to the saved LayoutLMv3-CRF PyTorch model checkpoint.")
args = parser.parse_args()
# --- Call the main function ---
final_json_data = run_document_pipeline(args.input_pdf, args.layoutlmv3_model_path)
if final_json_data:
# Example of what to do with the returned data: Save it to a file
output_file_name = os.path.splitext(os.path.basename(args.input_pdf))[0] + "_final_output_embedded.json"
# Determine where to save the final output (e.g., current directory)
final_output_path = os.path.abspath(output_file_name)
with open(final_output_path, 'w', encoding='utf-8') as f:
json.dump(final_json_data, f, indent=2, ensure_ascii=False)
print(f"\n✅ Final structured data successfully returned and saved to: {final_output_path}") |