Spaces:
Configuration error
Configuration error
| """ DPT Model for monocular depth estimation, adopted from https://github1s.com/ashawkey/stable-dreamfusion/blob/HEAD/preprocess_image.py""" | |
| import math | |
| import types | |
| from typing import Any | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torchvision import transforms | |
| from pathlib import Path | |
| import timm | |
| class BaseModel(torch.nn.Module): | |
| def load(self, path): | |
| """Load model from file. | |
| Args: | |
| path (str): file path | |
| """ | |
| parameters = torch.load(path, map_location=torch.device("cpu")) | |
| if "optimizer" in parameters: | |
| parameters = parameters["model"] | |
| self.load_state_dict(parameters) | |
| def unflatten_with_named_tensor(input, dim, sizes): | |
| """Workaround for unflattening with named tensor.""" | |
| # tracer acts up with unflatten. See https://github.com/pytorch/pytorch/issues/49538 | |
| new_shape = list(input.shape)[:dim] + list(sizes) + list(input.shape)[dim + 1 :] | |
| return input.view(*new_shape) | |
| class Slice(nn.Module): | |
| def __init__(self, start_index=1): | |
| super(Slice, self).__init__() | |
| self.start_index = start_index | |
| def forward(self, x): | |
| return x[:, self.start_index :] | |
| class AddReadout(nn.Module): | |
| def __init__(self, start_index=1): | |
| super(AddReadout, self).__init__() | |
| self.start_index = start_index | |
| def forward(self, x): | |
| if self.start_index == 2: | |
| readout = (x[:, 0] + x[:, 1]) / 2 | |
| else: | |
| readout = x[:, 0] | |
| return x[:, self.start_index :] + readout.unsqueeze(1) | |
| class ProjectReadout(nn.Module): | |
| def __init__(self, in_features, start_index=1): | |
| super(ProjectReadout, self).__init__() | |
| self.start_index = start_index | |
| self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) | |
| def forward(self, x): | |
| readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) | |
| features = torch.cat((x[:, self.start_index :], readout), -1) | |
| return self.project(features) | |
| class Transpose(nn.Module): | |
| def __init__(self, dim0, dim1): | |
| super(Transpose, self).__init__() | |
| self.dim0 = dim0 | |
| self.dim1 = dim1 | |
| def forward(self, x): | |
| x = x.transpose(self.dim0, self.dim1) | |
| return x | |
| def forward_vit(pretrained, x): | |
| b, c, h, w = x.shape | |
| glob = pretrained.model.forward_flex(x) | |
| layer_1 = pretrained.activations["1"] | |
| layer_2 = pretrained.activations["2"] | |
| layer_3 = pretrained.activations["3"] | |
| layer_4 = pretrained.activations["4"] | |
| layer_1 = pretrained.act_postprocess1[0:2](layer_1) | |
| layer_2 = pretrained.act_postprocess2[0:2](layer_2) | |
| layer_3 = pretrained.act_postprocess3[0:2](layer_3) | |
| layer_4 = pretrained.act_postprocess4[0:2](layer_4) | |
| unflattened_dim = 2 | |
| unflattened_size = ( | |
| int(torch.div(h, pretrained.model.patch_size[1], rounding_mode="floor")), | |
| int(torch.div(w, pretrained.model.patch_size[0], rounding_mode="floor")), | |
| ) | |
| unflatten = nn.Sequential(nn.Unflatten(unflattened_dim, unflattened_size)) | |
| if layer_1.ndim == 3: | |
| layer_1 = unflatten(layer_1) | |
| if layer_2.ndim == 3: | |
| layer_2 = unflatten(layer_2) | |
| if layer_3.ndim == 3: | |
| layer_3 = unflatten_with_named_tensor( | |
| layer_3, unflattened_dim, unflattened_size | |
| ) | |
| if layer_4.ndim == 3: | |
| layer_4 = unflatten_with_named_tensor( | |
| layer_4, unflattened_dim, unflattened_size | |
| ) | |
| layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) | |
| layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) | |
| layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) | |
| layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) | |
| return layer_1, layer_2, layer_3, layer_4 | |
| def _resize_pos_embed(self, posemb, gs_h, gs_w): | |
| posemb_tok, posemb_grid = ( | |
| posemb[:, : self.start_index], | |
| posemb[0, self.start_index :], | |
| ) | |
| gs_old = int(math.sqrt(posemb_grid.shape[0])) | |
| posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
| posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") | |
| posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) | |
| posemb = torch.cat([posemb_tok, posemb_grid], dim=1) | |
| return posemb | |
| def forward_flex(self, x): | |
| b, c, h, w = x.shape | |
| pos_embed = self._resize_pos_embed( | |
| self.pos_embed, | |
| torch.div(h, self.patch_size[1], rounding_mode="floor"), | |
| torch.div(w, self.patch_size[0], rounding_mode="floor"), | |
| ) | |
| B = x.shape[0] | |
| if hasattr(self.patch_embed, "backbone"): | |
| x = self.patch_embed.backbone(x) | |
| if isinstance(x, (list, tuple)): | |
| x = x[-1] # last feature if backbone outputs list/tuple of features | |
| x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) | |
| if getattr(self, "dist_token", None) is not None: | |
| cls_tokens = self.cls_token.expand( | |
| B, -1, -1 | |
| ) # stole cls_tokens impl from Phil Wang, thanks | |
| dist_token = self.dist_token.expand(B, -1, -1) | |
| x = torch.cat((cls_tokens, dist_token, x), dim=1) | |
| else: | |
| cls_tokens = self.cls_token.expand( | |
| B, -1, -1 | |
| ) # stole cls_tokens impl from Phil Wang, thanks | |
| x = torch.cat((cls_tokens, x), dim=1) | |
| x = x + pos_embed | |
| x = self.pos_drop(x) | |
| for blk in self.blocks: | |
| x = blk(x) | |
| x = self.norm(x) | |
| return x | |
| activations = {} | |
| def get_activation(name): | |
| def hook(model, input, output): | |
| activations[name] = output | |
| return hook | |
| def get_readout_oper(vit_features, features, use_readout, start_index=1): | |
| if use_readout == "ignore": | |
| readout_oper = [Slice(start_index)] * len(features) | |
| elif use_readout == "add": | |
| readout_oper = [AddReadout(start_index)] * len(features) | |
| elif use_readout == "project": | |
| readout_oper = [ | |
| ProjectReadout(vit_features, start_index) for out_feat in features | |
| ] | |
| else: | |
| assert ( | |
| False | |
| ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" | |
| return readout_oper | |
| def _make_vit_b16_backbone( | |
| model, | |
| features=[96, 192, 384, 768], | |
| size=[384, 384], | |
| hooks=[2, 5, 8, 11], | |
| vit_features=768, | |
| use_readout="ignore", | |
| start_index=1, | |
| ): | |
| pretrained = nn.Module() | |
| pretrained.model = model | |
| pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) | |
| pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) | |
| pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) | |
| pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) | |
| pretrained.activations = activations | |
| readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) | |
| # 32, 48, 136, 384 | |
| pretrained.act_postprocess1 = nn.Sequential( | |
| readout_oper[0], | |
| Transpose(1, 2), | |
| nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
| nn.Conv2d( | |
| in_channels=vit_features, | |
| out_channels=features[0], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| nn.ConvTranspose2d( | |
| in_channels=features[0], | |
| out_channels=features[0], | |
| kernel_size=4, | |
| stride=4, | |
| padding=0, | |
| bias=True, | |
| dilation=1, | |
| groups=1, | |
| ), | |
| ) | |
| pretrained.act_postprocess2 = nn.Sequential( | |
| readout_oper[1], | |
| Transpose(1, 2), | |
| nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
| nn.Conv2d( | |
| in_channels=vit_features, | |
| out_channels=features[1], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| nn.ConvTranspose2d( | |
| in_channels=features[1], | |
| out_channels=features[1], | |
| kernel_size=2, | |
| stride=2, | |
| padding=0, | |
| bias=True, | |
| dilation=1, | |
| groups=1, | |
| ), | |
| ) | |
| pretrained.act_postprocess3 = nn.Sequential( | |
| readout_oper[2], | |
| Transpose(1, 2), | |
| nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
| nn.Conv2d( | |
| in_channels=vit_features, | |
| out_channels=features[2], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| ) | |
| pretrained.act_postprocess4 = nn.Sequential( | |
| readout_oper[3], | |
| Transpose(1, 2), | |
| nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
| nn.Conv2d( | |
| in_channels=vit_features, | |
| out_channels=features[3], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| nn.Conv2d( | |
| in_channels=features[3], | |
| out_channels=features[3], | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| ), | |
| ) | |
| pretrained.model.start_index = start_index | |
| pretrained.model.patch_size = [16, 16] | |
| # We inject this function into the VisionTransformer instances so that | |
| # we can use it with interpolated position embeddings without modifying the library source. | |
| pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | |
| pretrained.model._resize_pos_embed = types.MethodType( | |
| _resize_pos_embed, pretrained.model | |
| ) | |
| return pretrained | |
| def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): | |
| model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) | |
| hooks = [5, 11, 17, 23] if hooks == None else hooks | |
| return _make_vit_b16_backbone( | |
| model, | |
| features=[256, 512, 1024, 1024], | |
| hooks=hooks, | |
| vit_features=1024, | |
| use_readout=use_readout, | |
| ) | |
| def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): | |
| model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) | |
| hooks = [2, 5, 8, 11] if hooks == None else hooks | |
| return _make_vit_b16_backbone( | |
| model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout | |
| ) | |
| def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None): | |
| model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) | |
| hooks = [2, 5, 8, 11] if hooks == None else hooks | |
| return _make_vit_b16_backbone( | |
| model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout | |
| ) | |
| def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None): | |
| model = timm.create_model( | |
| "vit_deit_base_distilled_patch16_384", pretrained=pretrained | |
| ) | |
| hooks = [2, 5, 8, 11] if hooks == None else hooks | |
| return _make_vit_b16_backbone( | |
| model, | |
| features=[96, 192, 384, 768], | |
| hooks=hooks, | |
| use_readout=use_readout, | |
| start_index=2, | |
| ) | |
| def _make_vit_b_rn50_backbone( | |
| model, | |
| features=[256, 512, 768, 768], | |
| size=[384, 384], | |
| hooks=[0, 1, 8, 11], | |
| vit_features=768, | |
| use_vit_only=False, | |
| use_readout="ignore", | |
| start_index=1, | |
| ): | |
| pretrained = nn.Module() | |
| pretrained.model = model | |
| if use_vit_only == True: | |
| pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) | |
| pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) | |
| else: | |
| pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( | |
| get_activation("1") | |
| ) | |
| pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( | |
| get_activation("2") | |
| ) | |
| pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) | |
| pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) | |
| pretrained.activations = activations | |
| readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) | |
| if use_vit_only == True: | |
| pretrained.act_postprocess1 = nn.Sequential( | |
| readout_oper[0], | |
| Transpose(1, 2), | |
| nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
| nn.Conv2d( | |
| in_channels=vit_features, | |
| out_channels=features[0], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| nn.ConvTranspose2d( | |
| in_channels=features[0], | |
| out_channels=features[0], | |
| kernel_size=4, | |
| stride=4, | |
| padding=0, | |
| bias=True, | |
| dilation=1, | |
| groups=1, | |
| ), | |
| ) | |
| pretrained.act_postprocess2 = nn.Sequential( | |
| readout_oper[1], | |
| Transpose(1, 2), | |
| nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
| nn.Conv2d( | |
| in_channels=vit_features, | |
| out_channels=features[1], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| nn.ConvTranspose2d( | |
| in_channels=features[1], | |
| out_channels=features[1], | |
| kernel_size=2, | |
| stride=2, | |
| padding=0, | |
| bias=True, | |
| dilation=1, | |
| groups=1, | |
| ), | |
| ) | |
| else: | |
| pretrained.act_postprocess1 = nn.Sequential( | |
| nn.Identity(), nn.Identity(), nn.Identity() | |
| ) | |
| pretrained.act_postprocess2 = nn.Sequential( | |
| nn.Identity(), nn.Identity(), nn.Identity() | |
| ) | |
| pretrained.act_postprocess3 = nn.Sequential( | |
| readout_oper[2], | |
| Transpose(1, 2), | |
| nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
| nn.Conv2d( | |
| in_channels=vit_features, | |
| out_channels=features[2], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| ) | |
| pretrained.act_postprocess4 = nn.Sequential( | |
| readout_oper[3], | |
| Transpose(1, 2), | |
| nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
| nn.Conv2d( | |
| in_channels=vit_features, | |
| out_channels=features[3], | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| ), | |
| nn.Conv2d( | |
| in_channels=features[3], | |
| out_channels=features[3], | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| ), | |
| ) | |
| pretrained.model.start_index = start_index | |
| pretrained.model.patch_size = [16, 16] | |
| # We inject this function into the VisionTransformer instances so that | |
| # we can use it with interpolated position embeddings without modifying the library source. | |
| pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | |
| # We inject this function into the VisionTransformer instances so that | |
| # we can use it with interpolated position embeddings without modifying the library source. | |
| pretrained.model._resize_pos_embed = types.MethodType( | |
| _resize_pos_embed, pretrained.model | |
| ) | |
| return pretrained | |
| def _make_pretrained_vitb_rn50_384( | |
| pretrained, use_readout="ignore", hooks=None, use_vit_only=False | |
| ): | |
| model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) | |
| hooks = [0, 1, 8, 11] if hooks == None else hooks | |
| return _make_vit_b_rn50_backbone( | |
| model, | |
| features=[256, 512, 768, 768], | |
| size=[384, 384], | |
| hooks=hooks, | |
| use_vit_only=use_vit_only, | |
| use_readout=use_readout, | |
| ) | |
| def _make_encoder( | |
| backbone, | |
| features, | |
| use_pretrained, | |
| groups=1, | |
| expand=False, | |
| exportable=True, | |
| hooks=None, | |
| use_vit_only=False, | |
| use_readout="ignore", | |
| ): | |
| if backbone == "vitl16_384": | |
| pretrained = _make_pretrained_vitl16_384( | |
| use_pretrained, hooks=hooks, use_readout=use_readout | |
| ) | |
| scratch = _make_scratch( | |
| [256, 512, 1024, 1024], features, groups=groups, expand=expand | |
| ) # ViT-L/16 - 85.0% Top1 (backbone) | |
| elif backbone == "vitb_rn50_384": | |
| pretrained = _make_pretrained_vitb_rn50_384( | |
| use_pretrained, | |
| hooks=hooks, | |
| use_vit_only=use_vit_only, | |
| use_readout=use_readout, | |
| ) | |
| scratch = _make_scratch( | |
| [256, 512, 768, 768], features, groups=groups, expand=expand | |
| ) # ViT-H/16 - 85.0% Top1 (backbone) | |
| elif backbone == "vitb16_384": | |
| pretrained = _make_pretrained_vitb16_384( | |
| use_pretrained, hooks=hooks, use_readout=use_readout | |
| ) | |
| scratch = _make_scratch( | |
| [96, 192, 384, 768], features, groups=groups, expand=expand | |
| ) # ViT-B/16 - 84.6% Top1 (backbone) | |
| elif backbone == "resnext101_wsl": | |
| pretrained = _make_pretrained_resnext101_wsl(use_pretrained) | |
| scratch = _make_scratch( | |
| [256, 512, 1024, 2048], features, groups=groups, expand=expand | |
| ) # efficientnet_lite3 | |
| elif backbone == "efficientnet_lite3": | |
| pretrained = _make_pretrained_efficientnet_lite3( | |
| use_pretrained, exportable=exportable | |
| ) | |
| scratch = _make_scratch( | |
| [32, 48, 136, 384], features, groups=groups, expand=expand | |
| ) # efficientnet_lite3 | |
| else: | |
| print(f"Backbone '{backbone}' not implemented") | |
| assert False | |
| return pretrained, scratch | |
| def _make_scratch(in_shape, out_shape, groups=1, expand=False): | |
| scratch = nn.Module() | |
| out_shape1 = out_shape | |
| out_shape2 = out_shape | |
| out_shape3 = out_shape | |
| out_shape4 = out_shape | |
| if expand == True: | |
| out_shape1 = out_shape | |
| out_shape2 = out_shape * 2 | |
| out_shape3 = out_shape * 4 | |
| out_shape4 = out_shape * 8 | |
| scratch.layer1_rn = nn.Conv2d( | |
| in_shape[0], | |
| out_shape1, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False, | |
| groups=groups, | |
| ) | |
| scratch.layer2_rn = nn.Conv2d( | |
| in_shape[1], | |
| out_shape2, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False, | |
| groups=groups, | |
| ) | |
| scratch.layer3_rn = nn.Conv2d( | |
| in_shape[2], | |
| out_shape3, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False, | |
| groups=groups, | |
| ) | |
| scratch.layer4_rn = nn.Conv2d( | |
| in_shape[3], | |
| out_shape4, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=False, | |
| groups=groups, | |
| ) | |
| return scratch | |
| def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False): | |
| efficientnet = torch.hub.load( | |
| "rwightman/gen-efficientnet-pytorch", | |
| "tf_efficientnet_lite3", | |
| pretrained=use_pretrained, | |
| exportable=exportable, | |
| ) | |
| return _make_efficientnet_backbone(efficientnet) | |
| def _make_efficientnet_backbone(effnet): | |
| pretrained = nn.Module() | |
| pretrained.layer1 = nn.Sequential( | |
| effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2] | |
| ) | |
| pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3]) | |
| pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5]) | |
| pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9]) | |
| return pretrained | |
| def _make_resnet_backbone(resnet): | |
| pretrained = nn.Module() | |
| pretrained.layer1 = nn.Sequential( | |
| resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 | |
| ) | |
| pretrained.layer2 = resnet.layer2 | |
| pretrained.layer3 = resnet.layer3 | |
| pretrained.layer4 = resnet.layer4 | |
| return pretrained | |
| def _make_pretrained_resnext101_wsl(use_pretrained): | |
| resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") | |
| return _make_resnet_backbone(resnet) | |
| class Interpolate(nn.Module): | |
| """Interpolation module.""" | |
| def __init__(self, scale_factor, mode, align_corners=False): | |
| """Init. | |
| Args: | |
| scale_factor (float): scaling | |
| mode (str): interpolation mode | |
| """ | |
| super(Interpolate, self).__init__() | |
| self.interp = nn.functional.interpolate | |
| self.scale_factor = scale_factor | |
| self.mode = mode | |
| self.align_corners = align_corners | |
| def forward(self, x): | |
| """Forward pass. | |
| Args: | |
| x (tensor): input | |
| Returns: | |
| tensor: interpolated data | |
| """ | |
| x = self.interp( | |
| x, | |
| scale_factor=self.scale_factor, | |
| mode=self.mode, | |
| align_corners=self.align_corners, | |
| ) | |
| return x | |
| class ResidualConvUnit(nn.Module): | |
| """Residual convolution module.""" | |
| def __init__(self, features): | |
| """Init. | |
| Args: | |
| features (int): number of features | |
| """ | |
| super().__init__() | |
| self.conv1 = nn.Conv2d( | |
| features, features, kernel_size=3, stride=1, padding=1, bias=True | |
| ) | |
| self.conv2 = nn.Conv2d( | |
| features, features, kernel_size=3, stride=1, padding=1, bias=True | |
| ) | |
| self.relu = nn.ReLU(inplace=True) | |
| def forward(self, x): | |
| """Forward pass. | |
| Args: | |
| x (tensor): input | |
| Returns: | |
| tensor: output | |
| """ | |
| out = self.relu(x) | |
| out = self.conv1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| return out + x | |
| class FeatureFusionBlock(nn.Module): | |
| """Feature fusion block.""" | |
| def __init__(self, features): | |
| """Init. | |
| Args: | |
| features (int): number of features | |
| """ | |
| super(FeatureFusionBlock, self).__init__() | |
| self.resConfUnit1 = ResidualConvUnit(features) | |
| self.resConfUnit2 = ResidualConvUnit(features) | |
| def forward(self, *xs): | |
| """Forward pass. | |
| Returns: | |
| tensor: output | |
| """ | |
| output = xs[0] | |
| if len(xs) == 2: | |
| output += self.resConfUnit1(xs[1]) | |
| output = self.resConfUnit2(output) | |
| output = nn.functional.interpolate( | |
| output, scale_factor=2, mode="bilinear", align_corners=True | |
| ) | |
| return output | |
| class ResidualConvUnit_custom(nn.Module): | |
| """Residual convolution module.""" | |
| def __init__(self, features, activation, bn): | |
| """Init. | |
| Args: | |
| features (int): number of features | |
| """ | |
| super().__init__() | |
| self.bn = bn | |
| self.groups = 1 | |
| self.conv1 = nn.Conv2d( | |
| features, | |
| features, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=True, | |
| groups=self.groups, | |
| ) | |
| self.conv2 = nn.Conv2d( | |
| features, | |
| features, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=True, | |
| groups=self.groups, | |
| ) | |
| if self.bn == True: | |
| self.bn1 = nn.BatchNorm2d(features) | |
| self.bn2 = nn.BatchNorm2d(features) | |
| self.activation = activation | |
| self.skip_add = nn.quantized.FloatFunctional() | |
| def forward(self, x): | |
| """Forward pass. | |
| Args: | |
| x (tensor): input | |
| Returns: | |
| tensor: output | |
| """ | |
| out = self.activation(x) | |
| out = self.conv1(out) | |
| if self.bn == True: | |
| out = self.bn1(out) | |
| out = self.activation(out) | |
| out = self.conv2(out) | |
| if self.bn == True: | |
| out = self.bn2(out) | |
| if self.groups > 1: | |
| out = self.conv_merge(out) | |
| return self.skip_add.add(out, x) | |
| # return out + x | |
| class FeatureFusionBlock_custom(nn.Module): | |
| """Feature fusion block.""" | |
| def __init__( | |
| self, | |
| features, | |
| activation, | |
| deconv=False, | |
| bn=False, | |
| expand=False, | |
| align_corners=True, | |
| ): | |
| """Init. | |
| Args: | |
| features (int): number of features | |
| """ | |
| super(FeatureFusionBlock_custom, self).__init__() | |
| self.deconv = deconv | |
| self.align_corners = align_corners | |
| self.groups = 1 | |
| self.expand = expand | |
| out_features = features | |
| if self.expand == True: | |
| out_features = features // 2 | |
| self.out_conv = nn.Conv2d( | |
| features, | |
| out_features, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=True, | |
| groups=1, | |
| ) | |
| self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) | |
| self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) | |
| self.skip_add = nn.quantized.FloatFunctional() | |
| def forward(self, *xs): | |
| """Forward pass. | |
| Returns: | |
| tensor: output | |
| """ | |
| output = xs[0] | |
| if len(xs) == 2: | |
| res = self.resConfUnit1(xs[1]) | |
| output = self.skip_add.add(output, res) | |
| # output += res | |
| output = self.resConfUnit2(output) | |
| output = nn.functional.interpolate( | |
| output, scale_factor=2, mode="bilinear", align_corners=self.align_corners | |
| ) | |
| output = self.out_conv(output) | |
| return output | |
| def _make_fusion_block(features, use_bn): | |
| return FeatureFusionBlock_custom( | |
| features, | |
| nn.ReLU(False), | |
| deconv=False, | |
| bn=use_bn, | |
| expand=False, | |
| align_corners=True, | |
| ) | |
| class DPT_(BaseModel): | |
| def __init__( | |
| self, | |
| head, | |
| features=256, | |
| backbone="vitb_rn50_384", | |
| readout="project", | |
| channels_last=False, | |
| use_bn=False, | |
| ): | |
| super(DPT_, self).__init__() | |
| self.channels_last = channels_last | |
| hooks = { | |
| "vitb_rn50_384": [0, 1, 8, 11], | |
| "vitb16_384": [2, 5, 8, 11], | |
| "vitl16_384": [5, 11, 17, 23], | |
| } | |
| # Instantiate backbone and reassemble blocks | |
| self.pretrained, self.scratch = _make_encoder( | |
| backbone, | |
| features, | |
| True, # Set to true of you want to train from scratch, uses ImageNet weights | |
| groups=1, | |
| expand=False, | |
| exportable=False, | |
| hooks=hooks[backbone], | |
| use_readout=readout, | |
| ) | |
| self.scratch.refinenet1 = _make_fusion_block(features, use_bn) | |
| self.scratch.refinenet2 = _make_fusion_block(features, use_bn) | |
| self.scratch.refinenet3 = _make_fusion_block(features, use_bn) | |
| self.scratch.refinenet4 = _make_fusion_block(features, use_bn) | |
| self.scratch.output_conv = head | |
| def forward(self, x): | |
| if self.channels_last == True: | |
| x.contiguous(memory_format=torch.channels_last) | |
| layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) | |
| layer_1_rn = self.scratch.layer1_rn(layer_1) | |
| layer_2_rn = self.scratch.layer2_rn(layer_2) | |
| layer_3_rn = self.scratch.layer3_rn(layer_3) | |
| layer_4_rn = self.scratch.layer4_rn(layer_4) | |
| path_4 = self.scratch.refinenet4(layer_4_rn) | |
| path_3 = self.scratch.refinenet3(path_4, layer_3_rn) | |
| path_2 = self.scratch.refinenet2(path_3, layer_2_rn) | |
| path_1 = self.scratch.refinenet1(path_2, layer_1_rn) | |
| out = self.scratch.output_conv(path_1) | |
| return out | |
| class DPTDepthModel(DPT_): | |
| def __init__(self, path=None, non_negative=True, num_channels=1, **kwargs): | |
| features = kwargs["features"] if "features" in kwargs else 256 | |
| head = nn.Sequential( | |
| nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), | |
| Interpolate(scale_factor=2, mode="bilinear", align_corners=True), | |
| nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), | |
| nn.ReLU(True), | |
| nn.Conv2d(32, num_channels, kernel_size=1, stride=1, padding=0), | |
| nn.ReLU(True) if non_negative else nn.Identity(), | |
| nn.Identity(), | |
| ) | |
| super().__init__(head, **kwargs) | |
| if path is not None: | |
| self.load(path) | |
| def forward(self, x): | |
| return super().forward(x).squeeze(dim=1) | |
| def download_if_need(path, url): | |
| if Path(path).exists(): | |
| return | |
| import wget | |
| path.parent.mkdir(parents=True, exist_ok=True) | |
| wget.download(url, out=str(path)) | |
| class DPT: | |
| def __init__(self, device, mode="depth"): | |
| self.mode = mode | |
| self.device = device | |
| if self.mode == "depth": | |
| path = ".cache/dpt/omnidata_dpt_depth_v2.ckpt" | |
| self.model = DPTDepthModel(backbone="vitb_rn50_384") | |
| self.aug = transforms.Compose( | |
| [ | |
| transforms.Resize((384, 384)), | |
| transforms.Normalize(mean=0.5, std=0.5), | |
| ] | |
| ) | |
| elif self.mode == "normal": | |
| path = "../ckpts/omnidata_dpt_normal_v2.ckpt" | |
| download_if_need( | |
| path, | |
| "https://huggingface.co/clay3d/omnidata/resolve/main/omnidata_dpt_normal_v2.ckpt", | |
| ) | |
| self.model = DPTDepthModel(backbone="vitb_rn50_384", num_channels=3) | |
| self.aug = transforms.Compose( | |
| [ | |
| transforms.Resize((384, 384)), | |
| ] | |
| ) | |
| else: | |
| raise ValueError(f"Unknown mode {mode} for DPT") | |
| checkpoint = torch.load(path, map_location="cpu") | |
| if "state_dict" in checkpoint: | |
| state_dict = {} | |
| for k, v in checkpoint["state_dict"].items(): | |
| state_dict[k[6:]] = v | |
| else: | |
| state_dict = checkpoint | |
| self.model.load_state_dict(state_dict) | |
| self.model.eval().to(self.device) | |
| def __call__(self, x): | |
| # x.shape: [B H W 3] | |
| x = x.to(self.device) | |
| H, W = x.shape[1], x.shape[2] | |
| x = x.moveaxis(-1, 1) # [B 3 H W] | |
| x = self.aug(x) | |
| if self.mode == "depth": | |
| depth = self.model(x).clamp(0, 1) | |
| depth = F.interpolate( | |
| depth.unsqueeze(1), size=(H, W), mode="bicubic", align_corners=False | |
| ) | |
| # depth = depth.cpu().numpy() | |
| return depth.moveaxis(1, -1) | |
| elif self.mode == "normal": | |
| normal = self.model(x).clamp(0, 1) | |
| normal = F.interpolate( | |
| normal, size=(H, W), mode="bicubic", align_corners=False | |
| ) | |
| # normal = normal.cpu().numpy() | |
| return normal.moveaxis(1, -1) | |
| else: | |
| assert False | |