Spaces:
Configuration error
Configuration error
| # | |
| # Copyright (C) 2023, Inria | |
| # GRAPHDECO research group, https://team.inria.fr/graphdeco | |
| # All rights reserved. | |
| # | |
| # This software is free for non-commercial, research and evaluation use | |
| # under the terms of the LICENSE.md file. | |
| # | |
| # For inquiries contact george.drettakis@inria.fr | |
| # | |
| import os | |
| import sys | |
| from PIL import Image | |
| from typing import NamedTuple | |
| from scene.colmap_loader import ( | |
| read_extrinsics_text, | |
| read_intrinsics_text, | |
| qvec2rotmat, | |
| read_extrinsics_binary, | |
| read_intrinsics_binary, | |
| read_points3D_binary, | |
| read_points3D_text, | |
| ) | |
| from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal | |
| from utils.camera_utils import get_uniform_poses | |
| import numpy as np | |
| import json | |
| from pathlib import Path | |
| from plyfile import PlyData, PlyElement | |
| from utils.sh_utils import SH2RGB | |
| from scene.gaussian_model import BasicPointCloud | |
| from scene.cameras import Camera | |
| import torch | |
| import rembg | |
| import mcubes | |
| import trimesh | |
| class CameraInfo(NamedTuple): | |
| uid: int | |
| R: np.array | |
| T: np.array | |
| FovY: np.array | |
| FovX: np.array | |
| image: np.array | |
| image_path: str | |
| image_name: str | |
| width: int | |
| height: int | |
| class SceneInfo(NamedTuple): | |
| point_cloud: BasicPointCloud | |
| train_cameras: list | |
| test_cameras: list | |
| nerf_normalization: dict | |
| ply_path: str | |
| def getNerfppNorm(cam_info): | |
| def get_center_and_diag(cam_centers): | |
| cam_centers = np.hstack(cam_centers) | |
| avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True) | |
| center = avg_cam_center | |
| dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True) | |
| diagonal = np.max(dist) | |
| return center.flatten(), diagonal | |
| cam_centers = [] | |
| for cam in cam_info: | |
| W2C = getWorld2View2(cam.R, cam.T) | |
| C2W = np.linalg.inv(W2C) | |
| cam_centers.append(C2W[:3, 3:4]) | |
| center, diagonal = get_center_and_diag(cam_centers) | |
| radius = diagonal * 1.1 | |
| translate = -center | |
| return {"translate": translate, "radius": radius} | |
| def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder): | |
| cam_infos = [] | |
| for idx, key in enumerate(cam_extrinsics): | |
| sys.stdout.write("\r") | |
| # the exact output you're looking for: | |
| sys.stdout.write("Reading camera {}/{}".format(idx + 1, len(cam_extrinsics))) | |
| sys.stdout.flush() | |
| extr = cam_extrinsics[key] | |
| intr = cam_intrinsics[extr.camera_id] | |
| height = intr.height | |
| width = intr.width | |
| uid = intr.id | |
| R = np.transpose(qvec2rotmat(extr.qvec)) | |
| T = np.array(extr.tvec) | |
| if intr.model == "SIMPLE_PINHOLE": | |
| focal_length_x = intr.params[0] | |
| FovY = focal2fov(focal_length_x, height) | |
| FovX = focal2fov(focal_length_x, width) | |
| elif intr.model == "PINHOLE": | |
| focal_length_x = intr.params[0] | |
| focal_length_y = intr.params[1] | |
| FovY = focal2fov(focal_length_y, height) | |
| FovX = focal2fov(focal_length_x, width) | |
| else: | |
| assert ( | |
| False | |
| ), "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" | |
| image_path = os.path.join(images_folder, os.path.basename(extr.name)) | |
| image_name = os.path.basename(image_path).split(".")[0] | |
| image = Image.open(image_path) | |
| cam_info = CameraInfo( | |
| uid=uid, | |
| R=R, | |
| T=T, | |
| FovY=FovY, | |
| FovX=FovX, | |
| image=image, | |
| image_path=image_path, | |
| image_name=image_name, | |
| width=width, | |
| height=height, | |
| ) | |
| cam_infos.append(cam_info) | |
| sys.stdout.write("\n") | |
| return cam_infos | |
| def fetchPly(path): | |
| plydata = PlyData.read(path) | |
| vertices = plydata["vertex"] | |
| positions = np.vstack([vertices["x"], vertices["y"], vertices["z"]]).T | |
| colors = np.vstack([vertices["red"], vertices["green"], vertices["blue"]]).T / 255.0 | |
| normals = np.vstack([vertices["nx"], vertices["ny"], vertices["nz"]]).T | |
| return BasicPointCloud(points=positions, colors=colors, normals=normals) | |
| def storePly(path, xyz, rgb): | |
| # Define the dtype for the structured array | |
| dtype = [ | |
| ("x", "f4"), | |
| ("y", "f4"), | |
| ("z", "f4"), | |
| ("nx", "f4"), | |
| ("ny", "f4"), | |
| ("nz", "f4"), | |
| ("red", "u1"), | |
| ("green", "u1"), | |
| ("blue", "u1"), | |
| ] | |
| normals = np.zeros_like(xyz) | |
| elements = np.empty(xyz.shape[0], dtype=dtype) | |
| attributes = np.concatenate((xyz, normals, rgb), axis=1) | |
| elements[:] = list(map(tuple, attributes)) | |
| # Create the PlyData object and write to file | |
| vertex_element = PlyElement.describe(elements, "vertex") | |
| ply_data = PlyData([vertex_element]) | |
| ply_data.write(path) | |
| def readColmapSceneInfo(path, images, eval, llffhold=8): | |
| try: | |
| cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") | |
| cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") | |
| cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) | |
| cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) | |
| except: | |
| cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") | |
| cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") | |
| cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) | |
| cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) | |
| reading_dir = "images" if images == None else images | |
| cam_infos_unsorted = readColmapCameras( | |
| cam_extrinsics=cam_extrinsics, | |
| cam_intrinsics=cam_intrinsics, | |
| images_folder=os.path.join(path, reading_dir), | |
| ) | |
| cam_infos = sorted(cam_infos_unsorted.copy(), key=lambda x: x.image_name) | |
| if eval: | |
| train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0] | |
| test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0] | |
| else: | |
| train_cam_infos = cam_infos | |
| test_cam_infos = [] | |
| nerf_normalization = getNerfppNorm(train_cam_infos) | |
| ply_path = os.path.join(path, "sparse/0/points3D.ply") | |
| bin_path = os.path.join(path, "sparse/0/points3D.bin") | |
| txt_path = os.path.join(path, "sparse/0/points3D.txt") | |
| if not os.path.exists(ply_path): | |
| print( | |
| "Converting point3d.bin to .ply, will happen only the first time you open the scene." | |
| ) | |
| try: | |
| xyz, rgb, _ = read_points3D_binary(bin_path) | |
| except: | |
| xyz, rgb, _ = read_points3D_text(txt_path) | |
| storePly(ply_path, xyz, rgb) | |
| try: | |
| pcd = fetchPly(ply_path) | |
| except: | |
| pcd = None | |
| scene_info = SceneInfo( | |
| point_cloud=pcd, | |
| train_cameras=train_cam_infos, | |
| test_cameras=test_cam_infos, | |
| nerf_normalization=nerf_normalization, | |
| ply_path=ply_path, | |
| ) | |
| return scene_info | |
| def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"): | |
| cam_infos = [] | |
| with open(os.path.join(path, transformsfile)) as json_file: | |
| contents = json.load(json_file) | |
| fovx = contents["camera_angle_x"] | |
| frames = contents["frames"] | |
| for idx, frame in enumerate(frames): | |
| cam_name = os.path.join(path, frame["file_path"] + extension) | |
| # NeRF 'transform_matrix' is a camera-to-world transform | |
| c2w = np.array(frame["transform_matrix"]) | |
| # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) | |
| c2w[:3, 1:3] *= -1 | |
| # get the world-to-camera transform and set R, T | |
| w2c = np.linalg.inv(c2w) | |
| R = np.transpose( | |
| w2c[:3, :3] | |
| ) # R is stored transposed due to 'glm' in CUDA code | |
| T = w2c[:3, 3] | |
| image_path = os.path.join(path, cam_name) | |
| image_name = Path(cam_name).stem | |
| image = Image.open(image_path) | |
| im_data = np.array(image.convert("RGBA")) | |
| bg = np.array([1, 1, 1]) if white_background else np.array([0, 0, 0]) | |
| norm_data = im_data / 255.0 | |
| if norm_data.shape[-1] != 3: | |
| arr = norm_data[:, :, :3] * norm_data[:, :, 3:4] + bg * ( | |
| 1 - norm_data[:, :, 3:4] | |
| ) | |
| image = Image.fromarray(np.array(arr * 255.0, dtype=np.byte), "RGB") | |
| fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1]) | |
| FovY = fovy | |
| FovX = fovx | |
| cam_infos.append( | |
| CameraInfo( | |
| uid=idx, | |
| R=R, | |
| T=T, | |
| FovY=FovY, | |
| FovX=FovX, | |
| image=image, | |
| image_path=image_path, | |
| image_name=image_name, | |
| width=image.size[0], | |
| height=image.size[1], | |
| ) | |
| ) | |
| return cam_infos | |
| def uniform_surface_sampling_from_vertices_and_faces( | |
| vertices, faces, num_points: int | |
| ) -> torch.Tensor: | |
| """ | |
| Uniformly sample points from the surface of a mesh. | |
| Args: | |
| vertices (torch.Tensor): Vertices of the mesh. | |
| faces (torch.Tensor): Faces of the mesh. | |
| num_points (int): Number of points to sample. | |
| Returns: | |
| torch.Tensor: Points sampled from the surface of the mesh. | |
| """ | |
| mesh = trimesh.Trimesh(vertices=vertices, faces=faces) | |
| n = num_points | |
| points = [] | |
| while n > 0: | |
| p, _ = trimesh.sample.sample_surface_even(mesh, n) | |
| n -= p.shape[0] | |
| if n >= 0: | |
| points.append(p) | |
| else: | |
| points.append(p[:n]) | |
| if len(points) > 1: | |
| points = np.concatenate(points, axis=0) | |
| else: | |
| points = points[0] | |
| points = torch.from_numpy(points.astype(np.float32)) | |
| return points, torch.rand_like(points) | |
| def occ_from_sparse_initialize(poses, images, cameras, grid_reso, num_points): | |
| # fov is in degrees | |
| this_session = rembg.new_session() | |
| imgs = [rembg.remove(im, session=this_session) for im in images] | |
| reso = grid_reso | |
| occ_grid = torch.ones((reso, reso, reso), dtype=torch.bool, device="cuda") | |
| c2ws = poses | |
| center = c2ws[..., :3, 3].mean(axis=0) | |
| radius = np.linalg.norm(c2ws[..., :3, 3] - center, axis=-1).mean() | |
| xx, yy, zz = torch.meshgrid( | |
| torch.linspace(-radius, radius, reso, device="cuda"), | |
| torch.linspace(-radius, radius, reso, device="cuda"), | |
| torch.linspace(-radius, radius, reso, device="cuda"), | |
| indexing="ij", | |
| ) | |
| print("radius", radius) | |
| # xyz_grid = torch.stack((xx.flatten(), yy.flatten(), zz.flatten()), dim=-1) | |
| ww = torch.ones((reso, reso, reso), dtype=torch.float32, device="cuda") | |
| xyzw_grid = torch.stack((xx, yy, zz, ww), dim=-1) | |
| xyzw_grid[..., :3] += torch.from_numpy(center).cuda() | |
| c2ws = torch.tensor(c2ws, dtype=torch.float32) | |
| for c2w, camera, img in zip(c2ws, cameras, imgs): | |
| img = np.asarray(img) | |
| alpha = img[..., 3].astype(np.float32) / 255.0 | |
| is_foreground = alpha > 0.05 | |
| is_foreground = torch.from_numpy(is_foreground).cuda() | |
| full_proj_mtx = Camera( | |
| colmap_id=camera.uid, | |
| R=camera.R, | |
| T=camera.T, | |
| FoVx=camera.FovX, | |
| FoVy=camera.FovY, | |
| image=torch.randn(3, 10, 10), | |
| gt_alpha_mask=None, | |
| image_name="no", | |
| uid=0, | |
| data_device="cuda", | |
| ).full_proj_transform | |
| # check the scale | |
| ij = xyzw_grid @ full_proj_mtx | |
| ij = (ij + 1) / 2.0 | |
| h, w = img.shape[:2] | |
| ij = ij[..., :2] * torch.tensor([w, h], dtype=torch.float32, device="cuda") | |
| ij = ( | |
| ij.clamp( | |
| min=torch.tensor([0.0, 0.0], device="cuda"), | |
| max=torch.tensor([w - 1, h - 1], dtype=torch.float32, device="cuda"), | |
| ) | |
| .to(torch.long) | |
| .cuda() | |
| ) | |
| occ_grid = torch.logical_and(occ_grid, is_foreground[ij[..., 1], ij[..., 0]]) | |
| # To mesh | |
| occ_grid = occ_grid.to(torch.float32).cpu().numpy() | |
| vertices, triangles = mcubes.marching_cubes(occ_grid, 0.5) | |
| # vertices = (vertices / reso - 0.5) * radius * 2 + center | |
| # vertices = (vertices / (reso - 1.0) - 0.5) * radius * 2 * 2 + center | |
| vertices = vertices / (grid_reso - 1) * 2 - 1 | |
| vertices = vertices * radius + center | |
| # mcubes.export_obj(vertices, triangles, "./tmp/occ_voxel.obj") | |
| xyz, rgb = uniform_surface_sampling_from_vertices_and_faces( | |
| vertices, triangles, num_points | |
| ) | |
| return xyz | |
| def readNerfSyntheticInfo(path, white_background, eval, extension=".png"): | |
| print("Reading Training Transforms") | |
| train_cam_infos = readCamerasFromTransforms( | |
| path, "transforms_train.json", white_background, extension | |
| ) | |
| print("Reading Test Transforms") | |
| test_cam_infos = readCamerasFromTransforms( | |
| path, "transforms_test.json", white_background, extension | |
| ) | |
| if not eval: | |
| train_cam_infos.extend(test_cam_infos) | |
| test_cam_infos = [] | |
| nerf_normalization = getNerfppNorm(train_cam_infos) | |
| ply_path = os.path.join(path, "points3d.ply") | |
| if not os.path.exists(ply_path): | |
| # Since this data set has no colmap data, we start with random points | |
| num_pts = 100_000 | |
| print(f"Generating random point cloud ({num_pts})...") | |
| # We create random points inside the bounds of the synthetic Blender scenes | |
| xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 | |
| shs = np.random.random((num_pts, 3)) / 255.0 | |
| pcd = BasicPointCloud( | |
| points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)) | |
| ) | |
| storePly(ply_path, xyz, SH2RGB(shs) * 255) | |
| try: | |
| pcd = fetchPly(ply_path) | |
| except: | |
| pcd = None | |
| scene_info = SceneInfo( | |
| point_cloud=pcd, | |
| train_cameras=train_cam_infos, | |
| test_cameras=test_cam_infos, | |
| nerf_normalization=nerf_normalization, | |
| ply_path=ply_path, | |
| ) | |
| return scene_info | |
| def constructVideoNVSInfo( | |
| num_frames, | |
| radius, | |
| elevation, | |
| fov, | |
| reso, | |
| images, | |
| masks, | |
| num_pts=100_000, | |
| train=True, | |
| ): | |
| poses = get_uniform_poses(num_frames, radius, elevation) | |
| w2cs = np.linalg.inv(poses) | |
| train_cam_infos = [] | |
| for idx, pose in enumerate(w2cs): | |
| train_cam_infos.append( | |
| CameraInfo( | |
| uid=idx, | |
| R=np.transpose(pose[:3, :3]), | |
| T=pose[:3, 3], | |
| FovY=np.deg2rad(fov), | |
| FovX=np.deg2rad(fov), | |
| image=images[idx], | |
| image_path=None, | |
| image_name=idx, | |
| width=reso, | |
| height=reso, | |
| ) | |
| ) | |
| nerf_normalization = getNerfppNorm(train_cam_infos) | |
| # xyz = np.random.random((num_pts, 3)) * radius / 3 - radius / 3 | |
| xyz = np.random.randn(num_pts, 3) * radius / 16 | |
| # if len(poses) <= 24: | |
| # xyz = occ_from_sparse_initialize(poses, images, train_cam_infos, 256, num_pts) | |
| # num_pts = xyz.shape[0] | |
| # else: | |
| # xyz = np.random.randn(num_pts, 3) * radius / 16 | |
| xyz = np.random.randn(num_pts, 3) * radius / 16 | |
| # shs = np.random.random((num_pts, 3)) / 255.0 | |
| shs = np.ones((num_pts, 3)) * 0.2 | |
| pcd = BasicPointCloud( | |
| points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)) | |
| ) | |
| ply_path = "./tmp/points3d.ply" | |
| storePly(ply_path, xyz, SH2RGB(shs) * 255) | |
| pcd = fetchPly(ply_path) | |
| scene_info = SceneInfo( | |
| point_cloud=pcd, | |
| train_cameras=train_cam_infos, | |
| test_cameras=[], | |
| nerf_normalization=nerf_normalization, | |
| ply_path="./tmp/points3d.ply", | |
| ) | |
| return scene_info | |
| sceneLoadTypeCallbacks = { | |
| "Colmap": readColmapSceneInfo, | |
| "Blender": readNerfSyntheticInfo, | |
| "VideoNVS": constructVideoNVSInfo, | |
| } | |