File size: 35,892 Bytes
1ef2135 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 |
import datetime
import json
import os
import sys
import warnings
import pandas as pd
import plotly.graph_objects as go
import plotly.utils
import pytz
from binance.client import Client
from flask import Flask, render_template, request, jsonify
from flask_cors import CORS
from sympy import false
try:
from technical_indicators import add_technical_indicators, get_available_indicators
TECHNICAL_INDICATORS_AVAILABLE = False
except ImportError as e:
print(f"⚠️ 技术指标模块导入失败: {e}")
TECHNICAL_INDICATORS_AVAILABLE = False
# 定义空的替代函数
def add_technical_indicators(df, indicators_config=None):
return df
def get_available_indicators():
return {'trend': [], 'momentum': [], 'volatility': [], 'volume': []}
warnings.filterwarnings('ignore')
# 设置东八区时区
BEIJING_TZ = pytz.timezone('Asia/Shanghai')
# Add project root directory to path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
try:
from model import Kronos, KronosTokenizer, KronosPredictor
MODEL_AVAILABLE = True
except ImportError:
MODEL_AVAILABLE = False
print("Warning: Kronos model cannot be imported, will use simulated data for demonstration")
app = Flask(__name__)
CORS(app)
# Global variables to store models
tokenizer = None
model = None
predictor = None
# Available model configurations
AVAILABLE_MODELS = {
'kronos-mini': {
'name': 'Kronos-mini',
'model_id': 'NeoQuasar/Kronos-mini',
'tokenizer_id': 'NeoQuasar/Kronos-Tokenizer-2k',
'context_length': 2048,
'params': '4.1M',
'description': 'Lightweight model, suitable for fast prediction'
},
'kronos-small': {
'name': 'Kronos-small',
'model_id': 'NeoQuasar/Kronos-small',
'tokenizer_id': 'NeoQuasar/Kronos-Tokenizer-base',
'context_length': 512,
'params': '24.7M',
'description': 'Small model, balanced performance and speed'
},
'kronos-base': {
'name': 'Kronos-base',
'model_id': 'NeoQuasar/Kronos-base',
'tokenizer_id': 'NeoQuasar/Kronos-Tokenizer-base',
'context_length': 512,
'params': '102.3M',
'description': 'Base model, provides better prediction quality'
}
}
def get_available_symbols():
"""获取固定的交易对列表"""
# 返回固定的主要交易对,不再从币安API获取
return [
{'symbol': 'BTCUSDT', 'baseAsset': 'BTC', 'quoteAsset': 'USDT', 'name': 'BTC/USDT'},
{'symbol': 'ETHUSDT', 'baseAsset': 'ETH', 'quoteAsset': 'USDT', 'name': 'ETH/USDT'},
{'symbol': 'SOLUSDT', 'baseAsset': 'SOL', 'quoteAsset': 'USDT', 'name': 'SOL/USDT'},
{'symbol': 'BNBUSDT', 'baseAsset': 'BNB', 'quoteAsset': 'USDT', 'name': 'BNB/USDT'}
]
def get_binance_klines(symbol, interval='1h', limit=1000):
"""从币安获取K线数据,如果失败则生成模拟数据"""
try:
# 尝试初始化客户端并获取真实的币安数据
client = Client("", "")
klines = client.get_klines(
symbol=symbol,
interval=interval,
limit=limit
)
# 转换为DataFrame
df = pd.DataFrame(klines, columns=[
'timestamp', 'open', 'high', 'low', 'close', 'volume',
'close_time', 'quote_asset_volume', 'number_of_trades',
'taker_buy_base_asset_volume', 'taker_buy_quote_asset_volume', 'ignore'
])
# 数据类型转换,转换为东八区时间
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms', utc=True)
df['timestamp'] = df['timestamp'].dt.tz_convert(BEIJING_TZ)
df['timestamps'] = df['timestamp'] # 保持兼容性
# 转换数值列
numeric_cols = ['open', 'high', 'low', 'close', 'volume', 'quote_asset_volume']
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors='coerce')
# 添加amount列(成交额)
df['amount'] = df['quote_asset_volume']
# 只保留需要的列
df = df[['timestamp','timestamps', 'open', 'high', 'low', 'close', 'volume', 'amount']]
# 按时间排序
df = df.sort_values('timestamp').reset_index(drop=True)
# 添加技术指标(如果可用)
if TECHNICAL_INDICATORS_AVAILABLE:
try:
df = add_technical_indicators(df)
print(f"✅ 成功获取币安真实数据并计算技术指标: {symbol} {interval} {len(df)}条,{len(df.columns)}个特征")
except Exception as e:
print(f"⚠️ 技术指标计算失败,使用原始数据: {e}")
else:
print(f"✅ 成功获取币安真实数据: {symbol} {interval} {len(df)}条")
return df, None
except Exception as e:
print(f"⚠️ 币安API连接失败,使用模拟数据: {str(e)}")
def get_timeframe_options():
"""获取可用的时间周期选项"""
return [
{'value': '1m', 'label': '1分钟', 'description': '1分钟K线'},
{'value': '5m', 'label': '5分钟', 'description': '5分钟K线'},
{'value': '15m', 'label': '15分钟', 'description': '15分钟K线'},
{'value': '30m', 'label': '30分钟', 'description': '30分钟K线'},
{'value': '1h', 'label': '1小时', 'description': '1小时K线'},
{'value': '4h', 'label': '4小时', 'description': '4小时K线'},
{'value': '1d', 'label': '1天', 'description': '日K线'},
{'value': '1w', 'label': '1周', 'description': '周K线'},
]
def save_prediction_results(file_path, prediction_type, prediction_results, actual_data, input_data, prediction_params):
"""Save prediction results to file"""
try:
# Create prediction results directory
results_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'prediction_results')
os.makedirs(results_dir, exist_ok=True)
# Generate filename
timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
filename = f'prediction_{timestamp}.json'
filepath = os.path.join(results_dir, filename)
# Prepare data for saving
save_data = {
'timestamp': datetime.datetime.now().isoformat(),
'file_path': file_path,
'prediction_type': prediction_type,
'prediction_params': prediction_params,
'input_data_summary': {
'rows': len(input_data),
'columns': list(input_data.columns),
'price_range': {
'open': {'min': float(input_data['open'].min()), 'max': float(input_data['open'].max())},
'high': {'min': float(input_data['high'].min()), 'max': float(input_data['high'].max())},
'low': {'min': float(input_data['low'].min()), 'max': float(input_data['low'].max())},
'close': {'min': float(input_data['close'].min()), 'max': float(input_data['close'].max())}
},
'last_values': {
'open': float(input_data['open'].iloc[-1]),
'high': float(input_data['high'].iloc[-1]),
'low': float(input_data['low'].iloc[-1]),
'close': float(input_data['close'].iloc[-1])
}
},
'prediction_results': prediction_results,
'actual_data': actual_data,
'analysis': {}
}
# If actual data exists, perform comparison analysis
if actual_data and len(actual_data) > 0:
# Calculate continuity analysis
if len(prediction_results) > 0 and len(actual_data) > 0:
last_pred = prediction_results[0] # First prediction point
first_actual = actual_data[0] # First actual point
save_data['analysis']['continuity'] = {
'last_prediction': {
'open': last_pred['open'],
'high': last_pred['high'],
'low': last_pred['low'],
'close': last_pred['close']
},
'first_actual': {
'open': first_actual['open'],
'high': first_actual['high'],
'low': first_actual['low'],
'close': first_actual['close']
},
'gaps': {
'open_gap': abs(last_pred['open'] - first_actual['open']),
'high_gap': abs(last_pred['high'] - first_actual['high']),
'low_gap': abs(last_pred['low'] - first_actual['low']),
'close_gap': abs(last_pred['close'] - first_actual['close'])
},
'gap_percentages': {
'open_gap_pct': (abs(last_pred['open'] - first_actual['open']) / first_actual['open']) * 100,
'high_gap_pct': (abs(last_pred['high'] - first_actual['high']) / first_actual['high']) * 100,
'low_gap_pct': (abs(last_pred['low'] - first_actual['low']) / first_actual['low']) * 100,
'close_gap_pct': (abs(last_pred['close'] - first_actual['close']) / first_actual['close']) * 100
}
}
# Save to file
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(save_data, f, indent=2, ensure_ascii=False)
print(f"Prediction results saved to: {filepath}")
return filepath
except Exception as e:
print(f"Failed to save prediction results: {e}")
return None
def create_prediction_chart(df, pred_df, lookback, pred_len, actual_df=None, historical_start_idx=0):
"""Create prediction chart"""
# Use specified historical data start position, not always from the beginning of df
if historical_start_idx + lookback + pred_len <= len(df):
# Display lookback historical points + pred_len prediction points starting from specified position
historical_df = df.iloc[historical_start_idx:historical_start_idx + lookback]
prediction_range = range(historical_start_idx + lookback, historical_start_idx + lookback + pred_len)
else:
# If data is insufficient, adjust to maximum available range
available_lookback = min(lookback, len(df) - historical_start_idx)
available_pred_len = min(pred_len, max(0, len(df) - historical_start_idx - available_lookback))
historical_df = df.iloc[historical_start_idx:historical_start_idx + available_lookback]
prediction_range = range(historical_start_idx + available_lookback,
historical_start_idx + available_lookback + available_pred_len)
# Create chart
fig = go.Figure()
# Add historical data (candlestick chart)
fig.add_trace(go.Candlestick(
x=historical_df['timestamps'] if 'timestamps' in historical_df.columns else historical_df.index,
open=historical_df['open'],
high=historical_df['high'],
low=historical_df['low'],
close=historical_df['close'],
name='Historical Data (400 data points)',
increasing_line_color='#26A69A',
decreasing_line_color='#EF5350'
))
# Add prediction data (candlestick chart)
if pred_df is not None and len(pred_df) > 0:
# Calculate prediction data timestamps - ensure continuity with historical data
if 'timestamps' in df.columns and len(historical_df) > 0:
# Start from the last timestamp of historical data, create prediction timestamps with the same time interval
last_timestamp = historical_df['timestamps'].iloc[-1]
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0] if len(df) > 1 else pd.Timedelta(hours=1)
pred_timestamps = pd.date_range(
start=last_timestamp + time_diff,
periods=len(pred_df),
freq=time_diff
)
else:
# If no timestamps, use index
pred_timestamps = range(len(historical_df), len(historical_df) + len(pred_df))
fig.add_trace(go.Candlestick(
x=pred_timestamps,
open=pred_df['open'],
high=pred_df['high'],
low=pred_df['low'],
close=pred_df['close'],
name='Prediction Data (120 data points)',
increasing_line_color='#66BB6A',
decreasing_line_color='#FF7043'
))
# Add actual data for comparison (if exists)
if actual_df is not None and len(actual_df) > 0:
# Actual data should be in the same time period as prediction data
if 'timestamps' in df.columns:
# Actual data should use the same timestamps as prediction data to ensure time alignment
if 'pred_timestamps' in locals():
actual_timestamps = pred_timestamps
else:
# If no prediction timestamps, calculate from the last timestamp of historical data
if len(historical_df) > 0:
last_timestamp = historical_df['timestamps'].iloc[-1]
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0] if len(df) > 1 else pd.Timedelta(
hours=1)
actual_timestamps = pd.date_range(
start=last_timestamp + time_diff,
periods=len(actual_df),
freq=time_diff
)
else:
actual_timestamps = range(len(historical_df), len(historical_df) + len(actual_df))
else:
actual_timestamps = range(len(historical_df), len(historical_df) + len(actual_df))
fig.add_trace(go.Candlestick(
x=actual_timestamps,
open=actual_df['open'],
high=actual_df['high'],
low=actual_df['low'],
close=actual_df['close'],
name='Actual Data (120 data points)',
increasing_line_color='#FF9800',
decreasing_line_color='#F44336'
))
# Update layout
fig.update_layout(
title='Kronos Financial Prediction Results - 400 Historical Points + 120 Prediction Points vs 120 Actual Points',
xaxis_title='Time',
yaxis_title='Price',
template='plotly_white',
height=600,
showlegend=True
)
# Ensure x-axis time continuity
if 'timestamps' in historical_df.columns:
# Get all timestamps and sort them
all_timestamps = []
if len(historical_df) > 0:
all_timestamps.extend(historical_df['timestamps'])
if 'pred_timestamps' in locals():
all_timestamps.extend(pred_timestamps)
if 'actual_timestamps' in locals():
all_timestamps.extend(actual_timestamps)
if all_timestamps:
all_timestamps = sorted(all_timestamps)
fig.update_xaxes(
range=[all_timestamps[0], all_timestamps[-1]],
rangeslider_visible=False,
type='date'
)
return json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)
@app.route('/')
def index():
"""Home page"""
return render_template('index.html')
@app.route('/api/symbols')
def get_symbols():
"""获取可用的交易对列表"""
symbols = get_available_symbols()
return jsonify(symbols)
@app.route('/api/timeframes')
def get_timeframes():
"""获取可用的时间周期列表"""
timeframes = get_timeframe_options()
return jsonify(timeframes)
@app.route('/api/technical-indicators')
def get_technical_indicators():
"""获取可用的技术指标列表"""
indicators = get_available_indicators()
return jsonify(indicators)
@app.route('/api/load-data', methods=['POST'])
def load_data():
"""加载币安数据"""
try:
data = request.get_json()
symbol = data.get('symbol')
interval = data.get('interval', '1h')
limit = int(data.get('limit', 1000))
if not symbol:
return jsonify({'error': '交易对不能为空'}), 400
df, error = get_binance_klines(symbol, interval, limit)
if error:
return jsonify({'error': error}), 400
# Detect data time frequency
def detect_timeframe(df):
if len(df) < 2:
return "Unknown"
time_diffs = []
for i in range(1, min(10, len(df))): # Check first 10 time differences
diff = df['timestamps'].iloc[i] - df['timestamps'].iloc[i - 1]
time_diffs.append(diff)
if not time_diffs:
return "Unknown"
# Calculate average time difference
avg_diff = sum(time_diffs, pd.Timedelta(0)) / len(time_diffs)
# Convert to readable format
if avg_diff < pd.Timedelta(minutes=1):
return f"{avg_diff.total_seconds():.0f} seconds"
elif avg_diff < pd.Timedelta(hours=1):
return f"{avg_diff.total_seconds() / 60:.0f} minutes"
elif avg_diff < pd.Timedelta(days=1):
return f"{avg_diff.total_seconds() / 3600:.0f} hours"
else:
return f"{avg_diff.days} days"
# Return data information with formatted time
def format_beijing_time(timestamp):
"""格式化东八区时间为 yyyy-MM-dd HH:mm:ss"""
if pd.isna(timestamp):
return 'N/A'
# 确保时间戳有时区信息
if timestamp.tz is None:
timestamp = timestamp.tz_localize(BEIJING_TZ)
elif timestamp.tz != BEIJING_TZ:
timestamp = timestamp.tz_convert(BEIJING_TZ)
return timestamp.strftime('%Y-%m-%d %H:%M:%S')
data_info = {
'rows': len(df),
'columns': list(df.columns),
'start_date': format_beijing_time(df['timestamps'].min()) if 'timestamps' in df.columns else 'N/A',
'end_date': format_beijing_time(df['timestamps'].max()) if 'timestamps' in df.columns else 'N/A',
'price_range': {
'min': float(df[['open', 'high', 'low', 'close']].min().min()),
'max': float(df[['open', 'high', 'low', 'close']].max().max())
},
'prediction_columns': ['open', 'high', 'low', 'close'] + (['volume'] if 'volume' in df.columns else []),
'timeframe': detect_timeframe(df)
}
return jsonify({
'success': True,
'data_info': data_info,
'message': f'Successfully loaded data, total {len(df)} rows'
})
except Exception as e:
return jsonify({'error': f'Failed to load data: {str(e)}'}), 500
@app.route('/api/predict', methods=['POST'])
def predict():
"""Perform prediction"""
try:
data = request.get_json()
symbol = data.get('symbol')
interval = data.get('interval', '1h')
limit = int(data.get('limit', 1000))
lookback = int(data.get('lookback', 400))
pred_len = int(data.get('pred_len', 120))
# Get prediction quality parameters
temperature = float(data.get('temperature', 1.0))
top_p = float(data.get('top_p', 0.9))
sample_count = int(data.get('sample_count', 1))
if not symbol:
return jsonify({'error': '交易对不能为空'}), 400
# Load data from Binance
df, error = get_binance_klines(symbol, interval, limit)
if error:
return jsonify({'error': error}), 400
if len(df) < lookback:
return jsonify({'error': f'Insufficient data length, need at least {lookback} rows'}), 400
# Perform prediction
if MODEL_AVAILABLE:
try:
# Use real Kronos model
# Only use necessary columns: OHLCVA (6 features required by Kronos model)
required_cols = ['open', 'high', 'low', 'close']
if 'volume' in df.columns:
required_cols.append('volume')
if 'amount' in df.columns:
required_cols.append('amount')
print(f"🔍 Using features for prediction: {required_cols}")
print(f" Available columns in data: {list(df.columns)}")
print(f" Data shape: {df.shape}")
# Check if required columns exist
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return jsonify({'error': f'Missing required columns: {missing_cols}'}), 400
# Process time period selection
start_date = data.get('start_date')
if start_date:
# Custom time period - fix logic: use data within selected window
start_dt = pd.to_datetime(start_date)
# Find data after start time
mask = df['timestamps'] >= start_dt
time_range_df = df[mask]
# Ensure sufficient data: lookback + pred_len
if len(time_range_df) < lookback + pred_len:
return jsonify({
'error': f'Insufficient data from start time {start_dt.strftime("%Y-%m-%d %H:%M")}, need at least {lookback + pred_len} data points, currently only {len(time_range_df)} available'}), 400
# Use first lookback data points within selected window for prediction
x_df = time_range_df.iloc[:lookback][required_cols]
x_timestamp = time_range_df.iloc[:lookback]['timestamps']
print(f"🔍 Custom time period - x_df shape: {x_df.shape}")
print(f" x_timestamp length: {len(x_timestamp)}")
print(f" x_df columns: {list(x_df.columns)}")
print(f" x_df sample:\n{x_df.head()}")
# Generate future timestamps for prediction instead of using existing data
# Calculate time difference from the data
if len(time_range_df) >= 2:
time_diff = time_range_df['timestamps'].iloc[1] - time_range_df['timestamps'].iloc[0]
else:
time_diff = pd.Timedelta(hours=1) # Default to 1 hour
# Generate future timestamps starting from the last timestamp of input data
last_timestamp = time_range_df['timestamps'].iloc[lookback - 1]
y_timestamp = pd.date_range(
start=last_timestamp + time_diff,
periods=pred_len,
freq=time_diff
)
# Calculate actual time period length
start_timestamp = time_range_df['timestamps'].iloc[0]
end_timestamp = y_timestamp[-1] # Use the last generated timestamp
time_span = end_timestamp - start_timestamp
prediction_type = f"Kronos model prediction (within selected window: first {lookback} data points for prediction, {pred_len} future predictions, time span: {time_span})"
else:
# Use latest data
x_df = df.iloc[:lookback][required_cols]
x_timestamp = df.iloc[:lookback]['timestamps']
# Generate future timestamps for prediction instead of using existing data
# Calculate time difference from the data
if len(df) >= 2:
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0]
else:
time_diff = pd.Timedelta(hours=1) # Default to 1 hour
# Generate future timestamps starting from the last timestamp of input data
last_timestamp = df['timestamps'].iloc[lookback - 1]
y_timestamp = pd.date_range(
start=last_timestamp + time_diff,
periods=pred_len,
freq=time_diff
)
prediction_type = "Kronos model prediction (latest data)"
print(f"🔍 Latest data - x_df shape: {x_df.shape}")
print(f" x_timestamp length: {len(x_timestamp)}")
print(f" y_timestamp length: {len(y_timestamp)}")
print(f" x_df columns: {list(x_df.columns)}")
print(f" x_df sample:\n{x_df.head()}")
# Check if data is empty
if x_df.empty or len(x_df) == 0:
return jsonify({'error': 'Input data is empty after processing'}), 400
if len(x_timestamp) == 0:
return jsonify({'error': 'Input timestamps are empty'}), 400
if len(y_timestamp) == 0:
return jsonify({'error': 'Target timestamps are empty'}), 400
# Ensure timestamps are Series format, not DatetimeIndex, to avoid .dt attribute error in Kronos model
if isinstance(x_timestamp, pd.DatetimeIndex):
x_timestamp = pd.Series(x_timestamp, name='timestamps')
if isinstance(y_timestamp, pd.DatetimeIndex):
y_timestamp = pd.Series(y_timestamp, name='timestamps')
pred_df = predictor.predict(
df=x_df,
x_timestamp=x_timestamp,
y_timestamp=y_timestamp,
pred_len=pred_len,
T=temperature,
top_p=top_p,
sample_count=sample_count
)
except Exception as e:
return jsonify({'error': f'Kronos model prediction failed: {str(e)}'}), 500
else:
return jsonify({'error': 'Kronos model not loaded, please load model first'}), 400
# Prepare actual data for comparison (if exists)
actual_data = []
actual_df = None
if start_date: # Custom time period
# Fix logic: use data within selected window
# Prediction uses first 400 data points within selected window
# Actual data should be last 120 data points within selected window
start_dt = pd.to_datetime(start_date)
# 确保时区一致性
if start_dt.tz is None:
start_dt = start_dt.tz_localize(BEIJING_TZ)
# Find data starting from start_date
mask = df['timestamps'] >= start_dt
time_range_df = df[mask]
if len(time_range_df) >= lookback + pred_len:
# Get last 120 data points within selected window as actual values
actual_df = time_range_df.iloc[lookback:lookback + pred_len]
for i, (_, row) in enumerate(actual_df.iterrows()):
actual_data.append({
'timestamp': row['timestamps'].isoformat(),
'open': float(row['open']),
'high': float(row['high']),
'low': float(row['low']),
'close': float(row['close']),
'volume': float(row['volume']) if 'volume' in row else 0,
'amount': float(row['amount']) if 'amount' in row else 0
})
else: # Latest data
# Prediction uses first 400 data points
# Actual data should be 120 data points after first 400 data points
if len(df) >= lookback + pred_len:
actual_df = df.iloc[lookback:lookback + pred_len]
for i, (_, row) in enumerate(actual_df.iterrows()):
actual_data.append({
'timestamp': row['timestamps'].isoformat(),
'open': float(row['open']),
'high': float(row['high']),
'low': float(row['low']),
'close': float(row['close']),
'volume': float(row['volume']) if 'volume' in row else 0,
'amount': float(row['amount']) if 'amount' in row else 0
})
# Create chart - pass historical data start position
if start_date:
# Custom time period: find starting position of historical data in original df
start_dt = pd.to_datetime(start_date)
# 确保时区一致性
if start_dt.tz is None:
start_dt = start_dt.tz_localize(BEIJING_TZ)
mask = df['timestamps'] >= start_dt
historical_start_idx = df[mask].index[0] if len(df[mask]) > 0 else 0
else:
# Latest data: start from beginning
historical_start_idx = 0
chart_json = create_prediction_chart(df, pred_df, lookback, pred_len, actual_df, historical_start_idx)
# Prepare prediction result data - fix timestamp calculation logic
if 'timestamps' in df.columns:
if start_date:
# Custom time period: use selected window data to calculate timestamps
start_dt = pd.to_datetime(start_date)
# 确保时区一致性
if start_dt.tz is None:
start_dt = start_dt.tz_localize(BEIJING_TZ)
mask = df['timestamps'] >= start_dt
time_range_df = df[mask]
if len(time_range_df) >= lookback:
# Calculate prediction timestamps starting from last time point of selected window
last_timestamp = time_range_df['timestamps'].iloc[lookback - 1]
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0]
future_timestamps = pd.date_range(
start=last_timestamp + time_diff,
periods=pred_len,
freq=time_diff
)
else:
future_timestamps = []
else:
# Latest data: calculate from last time point of entire data file
last_timestamp = df['timestamps'].iloc[-1]
time_diff = df['timestamps'].iloc[1] - df['timestamps'].iloc[0]
future_timestamps = pd.date_range(
start=last_timestamp + time_diff,
periods=pred_len,
freq=time_diff
)
else:
future_timestamps = range(len(df), len(df) + pred_len)
prediction_results = []
for i, (_, row) in enumerate(pred_df.iterrows()):
prediction_results.append({
'timestamp': future_timestamps[i].isoformat() if i < len(future_timestamps) else f"T{i}",
'open': float(row['open']),
'high': float(row['high']),
'low': float(row['low']),
'close': float(row['close']),
'volume': float(row['volume']) if 'volume' in row else 0,
'amount': float(row['amount']) if 'amount' in row else 0
})
# Save prediction results to file
try:
data_source = f"{symbol}_{interval}"
save_prediction_results(
file_path=data_source,
prediction_type=prediction_type,
prediction_results=prediction_results,
actual_data=actual_data,
input_data=x_df,
prediction_params={
'symbol': symbol,
'interval': interval,
'limit': limit,
'lookback': lookback,
'pred_len': pred_len,
'temperature': temperature,
'top_p': top_p,
'sample_count': sample_count,
'start_date': start_date if start_date else 'latest'
}
)
except Exception as e:
print(f"Failed to save prediction results: {e}")
return jsonify({
'success': True,
'prediction_type': prediction_type,
'chart': chart_json,
'prediction_results': prediction_results,
'actual_data': actual_data,
'has_comparison': len(actual_data) > 0,
'message': f'Prediction completed, generated {pred_len} prediction points' + (
f', including {len(actual_data)} actual data points for comparison' if len(actual_data) > 0 else '')
})
except Exception as e:
return jsonify({'error': f'Prediction failed: {str(e)}'}), 500
@app.route('/api/load-model', methods=['POST'])
def load_model():
"""Load Kronos model"""
global tokenizer, model, predictor
try:
if not MODEL_AVAILABLE:
return jsonify({'error': 'Kronos model library not available'}), 400
data = request.get_json()
model_key = data.get('model_key', 'kronos-small')
device = data.get('device', 'cpu')
if model_key not in AVAILABLE_MODELS:
return jsonify({'error': f'Unsupported model: {model_key}'}), 400
model_config = AVAILABLE_MODELS[model_key]
# Load tokenizer and model
tokenizer = KronosTokenizer.from_pretrained(model_config['tokenizer_id'])
model = Kronos.from_pretrained(model_config['model_id'])
# Create predictor
predictor = KronosPredictor(model, tokenizer, device=device, max_context=model_config['context_length'])
return jsonify({
'success': True,
'message': f'Model loaded successfully: {model_config["name"]} ({model_config["params"]}) on {device}',
'model_info': {
'name': model_config['name'],
'params': model_config['params'],
'context_length': model_config['context_length'],
'description': model_config['description']
}
})
except Exception as e:
return jsonify({'error': f'Model loading failed: {str(e)}'}), 500
@app.route('/api/available-models')
def get_available_models():
"""Get available model list"""
return jsonify({
'models': AVAILABLE_MODELS,
'model_available': MODEL_AVAILABLE
})
@app.route('/api/model-status')
def get_model_status():
"""Get model status"""
if MODEL_AVAILABLE:
if predictor is not None:
return jsonify({
'available': True,
'loaded': True,
'message': 'Kronos model loaded and available',
'current_model': {
'name': predictor.model.__class__.__name__,
'device': str(next(predictor.model.parameters()).device)
}
})
else:
return jsonify({
'available': True,
'loaded': False,
'message': 'Kronos model available but not loaded'
})
else:
return jsonify({
'available': False,
'loaded': False,
'message': 'Kronos model library not available, please install related dependencies'
})
if __name__ == '__main__':
print("Starting Kronos Web UI...")
print(f"Model availability: {MODEL_AVAILABLE}")
if MODEL_AVAILABLE:
print("Tip: You can load Kronos model through /api/load-model endpoint")
else:
print("Tip: Will use simulated data for demonstration")
app.run(debug=True, host='0.0.0.0', port=7070)
|