Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, Request | |
| from transformers import BertForSequenceClassification, AutoTokenizer | |
| from huggingface_hub import hf_hub_download | |
| import torch | |
| import pickle | |
| import os | |
| import sys | |
| import psutil | |
| app = FastAPI() | |
| device = torch.device("cpu") | |
| # category.pkl ๋ก๋ | |
| try: | |
| with open("category.pkl", "rb") as f: | |
| category = pickle.load(f) | |
| print("โ category.pkl ๋ก๋ ์ฑ๊ณต.") | |
| except FileNotFoundError: | |
| print("โ Error: category.pkl ํ์ผ์ ์ฐพ์ ์ ์์ต๋๋ค.") | |
| sys.exit(1) | |
| # ํ ํฌ๋์ด์ ๋ก๋ | |
| tokenizer = AutoTokenizer.from_pretrained("skt/kobert-base-v1") | |
| print("โ ํ ํฌ๋์ด์ ๋ก๋ ์ฑ๊ณต.") | |
| # ๋ชจ๋ธ ๊ตฌ์กฐ ์ฌ์ ์ | |
| num_labels = len(category) # ๋ถ๋ฅํ ํด๋์ค ์์ ๋ฐ๋ผ | |
| model = BertForSequenceClassification.from_pretrained("skt/kobert-base-v1", num_labels=num_labels) | |
| model.to(device) | |
| HF_MODEL_REPO_ID = "hiddenFront/TextClassifier" | |
| HF_MODEL_FILENAME = "textClassifierModel.pt" | |
| # ๋ฉ๋ชจ๋ฆฌ ์ธก์ ์ | |
| process = psutil.Process(os.getpid()) | |
| mem_before = process.memory_info().rss / (1024 * 1024) | |
| print(f"๐ฆ ๋ชจ๋ธ ๋ค์ด๋ก๋ ์ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_before:.2f} MB") | |
| # ๋ชจ๋ธ ๊ฐ์ค์น ๋ค์ด๋ก๋ | |
| try: | |
| model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME) | |
| print(f"โ ๋ชจ๋ธ ํ์ผ ๋ค์ด๋ก๋ ์ฑ๊ณต: {model_path}") | |
| mem_after_dl = process.memory_info().rss / (1024 * 1024) | |
| print(f"๐ฆ ๋ชจ๋ธ ๋ค์ด๋ก๋ ํ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_after_dl:.2f} MB") | |
| # state_dict ๋ก๋ | |
| state_dict = torch.load(model_path, map_location=device) | |
| model.load_state_dict(state_dict) | |
| model.eval() | |
| mem_after_load = process.memory_info().rss / (1024 * 1024) | |
| print(f"๐ฆ ๋ชจ๋ธ ๋ก๋ ํ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_after_load:.2f} MB") | |
| print("โ ๋ชจ๋ธ ๋ก๋ ๋ฐ ์ค๋น ์๋ฃ.") | |
| except Exception as e: | |
| print(f"โ Error: ๋ชจ๋ธ ๋ก๋ ์ค ์ค๋ฅ ๋ฐ์: {e}") | |
| sys.exit(1) | |
| # ์์ธก API | |
| async def predict_api(request: Request): | |
| data = await request.json() | |
| text = data.get("text") | |
| if not text: | |
| return {"error": "No text provided", "classification": "null"} | |
| encoded = tokenizer.encode_plus( | |
| text, max_length=64, padding='max_length', truncation=True, return_tensors='pt' | |
| ) | |
| with torch.no_grad(): | |
| outputs = model(**encoded) | |
| probs = torch.nn.functional.softmax(outputs.logits, dim=1) | |
| predicted = torch.argmax(probs, dim=1).item() | |
| label = list(category.keys())[predicted] | |
| return {"text": text, "classification": label} | |