Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
+
from transformers import AutoTokenizer, BertForSequenceClassification, BertConfig
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pickle
|
| 7 |
+
import sys
|
| 8 |
+
import collections
|
| 9 |
+
import os # os ๋ชจ๋ ์ํฌํธ
|
| 10 |
+
import psutil # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ํ์ธ์ ์ํด psutil ์ํฌํธ (requirements.txt์ ์ถ๊ฐ ํ์)
|
| 11 |
+
|
| 12 |
+
app = FastAPI()
|
| 13 |
+
device = torch.device("cpu")
|
| 14 |
+
|
| 15 |
+
# category.pkl ๋ก๋
|
| 16 |
+
try:
|
| 17 |
+
with open("category.pkl", "rb") as f:
|
| 18 |
+
category = pickle.load(f)
|
| 19 |
+
print("category.pkl ๋ก๋ ์ฑ๊ณต.")
|
| 20 |
+
except FileNotFoundError:
|
| 21 |
+
print("Error: category.pkl ํ์ผ์ ์ฐพ์ ์ ์์ต๋๋ค. ํ๋ก์ ํธ ๋ฃจํธ์ ์๋์ง ํ์ธํ์ธ์.")
|
| 22 |
+
sys.exit(1)
|
| 23 |
+
|
| 24 |
+
# ํ ํฌ๋์ด์ ๋ก๋
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("skt/kobert-base-v1")
|
| 26 |
+
print("ํ ํฌ๋์ด์ ๋ก๋ ์ฑ๊ณต.")
|
| 27 |
+
|
| 28 |
+
HF_MODEL_REPO_ID = "hiddenFront/TextClassifier"
|
| 29 |
+
HF_MODEL_FILENAME = "textClassifierModel.pt"
|
| 30 |
+
|
| 31 |
+
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
์์ ---
|
| 32 |
+
process = psutil.Process(os.getpid())
|
| 33 |
+
mem_before_model_download = process.memory_info().rss / (1024 * 1024) # MB ๋จ์
|
| 34 |
+
print(f"๋ชจ๋ธ ๋ค์ด๋ก๋ ์ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_before_model_download:.2f} MB")
|
| 35 |
+
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
๋ ---
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
|
| 39 |
+
print(f"๋ชจ๋ธ ํ์ผ์ด '{model_path}'์ ์ฑ๊ณต์ ์ผ๋ก ๋ค์ด๋ก๋๋์์ต๋๋ค.")
|
| 40 |
+
|
| 41 |
+
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
์์ ---
|
| 42 |
+
mem_after_model_download = process.memory_info().rss / (1024 * 1024) # MB ๋จ์
|
| 43 |
+
print(f"๋ชจ๋ธ ๋ค์ด๋ก๋ ํ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_after_model_download:.2f} MB")
|
| 44 |
+
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
๋ ---
|
| 45 |
+
|
| 46 |
+
# 1. ๋ชจ๋ธ ์ํคํ
์ฒ ์ ์ (๊ฐ์ค์น๋ ๋ก๋ํ์ง ์๊ณ ๊ตฌ์กฐ๋ง ์ด๊ธฐํ)
|
| 47 |
+
config = BertConfig.from_pretrained("skt/kobert-base-v1", num_labels=len(category))
|
| 48 |
+
model = BertForSequenceClassification(config)
|
| 49 |
+
|
| 50 |
+
# 2. ๋ค์ด๋ก๋๋ ํ์ผ์์ state_dict๋ฅผ ๋ก๋
|
| 51 |
+
loaded_state_dict = torch.load(model_path, map_location=device)
|
| 52 |
+
|
| 53 |
+
# 3. ๋ก๋๋ state_dict๋ฅผ ์ ์๋ ๋ชจ๋ธ์ ์ ์ฉ
|
| 54 |
+
new_state_dict = collections.OrderedDict()
|
| 55 |
+
for k, v in loaded_state_dict.items():
|
| 56 |
+
name = k
|
| 57 |
+
if name.startswith('module.'):
|
| 58 |
+
name = name[7:]
|
| 59 |
+
new_state_dict[name] = v
|
| 60 |
+
|
| 61 |
+
model.load_state_dict(new_state_dict)
|
| 62 |
+
|
| 63 |
+
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
์์ ---
|
| 64 |
+
mem_after_model_load = process.memory_info().rss / (1024 * 1024) # MB ๋จ์
|
| 65 |
+
print(f"๋ชจ๋ธ ๋ก๋ ๋ฐ state_dict ์ ์ฉ ํ ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋: {mem_after_model_load:.2f} MB")
|
| 66 |
+
# --- ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๋ก๊น
๋ ---
|
| 67 |
+
|
| 68 |
+
model.eval()
|
| 69 |
+
print("๋ชจ๋ธ ๋ก๋ ์ฑ๊ณต.")
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"Error: ๋ชจ๋ธ ๋ค์ด๋ก๋ ๋๋ ๋ก๋ ์ค ์ค๋ฅ ๋ฐ์: {e}")
|
| 72 |
+
sys.exit(1)
|
| 73 |
+
|
| 74 |
+
@app.post("/predict")
|
| 75 |
+
async def predict_api(request: Request):
|
| 76 |
+
data = await request.json()
|
| 77 |
+
text = data.get("text")
|
| 78 |
+
if not text:
|
| 79 |
+
return {"error": "No text provided", "classification": "null"}
|
| 80 |
+
|
| 81 |
+
encoded = tokenizer.encode_plus(
|
| 82 |
+
text, max_length=64, padding='max_length', truncation=True, return_tensors='pt'
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = model(**encoded)
|
| 87 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 88 |
+
predicted = torch.argmax(probs, dim=1).item()
|
| 89 |
+
|
| 90 |
+
label = list(category.keys())[predicted]
|
| 91 |
+
return {"text": text, "classification": label}
|