Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,11 @@
|
|
| 1 |
from fastapi import FastAPI, Request
|
| 2 |
-
from transformers import AutoTokenizer
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
import pickle
|
|
|
|
|
|
|
| 7 |
import sys
|
| 8 |
-
import collections
|
| 9 |
-
import os # os λͺ¨λ μν¬νΈ
|
| 10 |
-
import psutil # λ©λͺ¨λ¦¬ μ¬μ©λ νμΈμ μν΄ psutil μν¬νΈ (requirements.txtμ μΆκ° νμ)
|
| 11 |
|
| 12 |
app = FastAPI()
|
| 13 |
device = torch.device("cpu")
|
|
@@ -16,61 +14,42 @@ device = torch.device("cpu")
|
|
| 16 |
try:
|
| 17 |
with open("category.pkl", "rb") as f:
|
| 18 |
category = pickle.load(f)
|
| 19 |
-
print("category.pkl λ‘λ μ±κ³΅.")
|
| 20 |
except FileNotFoundError:
|
| 21 |
-
print("Error: category.pkl νμΌμ μ°Ύμ μ μμ΅λλ€. νλ‘μ νΈ λ£¨νΈμ μλμ§ νμΈνμΈμ.")
|
| 22 |
sys.exit(1)
|
| 23 |
|
| 24 |
# ν ν¬λμ΄μ λ‘λ
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained("skt/kobert-base-v1")
|
| 26 |
-
print("ν ν¬λμ΄μ λ‘λ μ±κ³΅.")
|
| 27 |
|
| 28 |
HF_MODEL_REPO_ID = "hiddenFront/TextClassifier"
|
| 29 |
HF_MODEL_FILENAME = "textClassifierModel.pt"
|
| 30 |
|
| 31 |
-
#
|
| 32 |
process = psutil.Process(os.getpid())
|
| 33 |
-
|
| 34 |
-
print(f"λͺ¨λΈ λ€μ΄λ‘λ μ λ©λͺ¨λ¦¬ μ¬μ©λ: {
|
| 35 |
-
# --- λ©λͺ¨λ¦¬ μ¬μ©λ λ‘κΉ
λ ---
|
| 36 |
|
|
|
|
| 37 |
try:
|
| 38 |
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
|
| 39 |
-
print(f"λͺ¨λΈ
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
print(f"λͺ¨λΈ λ€μ΄λ‘λ ν λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_after_model_download:.2f} MB")
|
| 44 |
-
# --- λ©λͺ¨λ¦¬ μ¬μ©λ λ‘κΉ
λ ---
|
| 45 |
-
|
| 46 |
-
# 1. λͺ¨λΈ μν€ν
μ² μ μ (κ°μ€μΉλ λ‘λνμ§ μκ³ κ΅¬μ‘°λ§ μ΄κΈ°ν)
|
| 47 |
-
config = BertConfig.from_pretrained("skt/kobert-base-v1", num_labels=len(category))
|
| 48 |
-
model = BertForSequenceClassification(config)
|
| 49 |
-
|
| 50 |
-
# 2. λ€μ΄λ‘λλ νμΌμμ state_dictλ₯Ό λ‘λ
|
| 51 |
-
loaded_state_dict = torch.load(model_path, map_location=device)
|
| 52 |
-
|
| 53 |
-
# 3. λ‘λλ state_dictλ₯Ό μ μλ λͺ¨λΈμ μ μ©
|
| 54 |
-
new_state_dict = collections.OrderedDict()
|
| 55 |
-
for k, v in loaded_state_dict.items():
|
| 56 |
-
name = k
|
| 57 |
-
if name.startswith('module.'):
|
| 58 |
-
name = name[7:]
|
| 59 |
-
new_state_dict[name] = v
|
| 60 |
-
|
| 61 |
-
model.load_state_dict(new_state_dict)
|
| 62 |
-
|
| 63 |
-
# --- λ©λͺ¨λ¦¬ μ¬μ©λ λ‘κΉ
μμ ---
|
| 64 |
-
mem_after_model_load = process.memory_info().rss / (1024 * 1024) # MB λ¨μ
|
| 65 |
-
print(f"λͺ¨λΈ λ‘λ λ° state_dict μ μ© ν λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_after_model_load:.2f} MB")
|
| 66 |
-
# --- λ©λͺ¨λ¦¬ μ¬μ©λ λ‘κΉ
λ ---
|
| 67 |
|
|
|
|
| 68 |
model.eval()
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
| 70 |
except Exception as e:
|
| 71 |
-
print(f"Error: λͺ¨λΈ λ€μ΄λ‘λ λλ λ‘λ μ€ μ€λ₯ λ°μ: {e}")
|
| 72 |
sys.exit(1)
|
| 73 |
|
|
|
|
| 74 |
@app.post("/predict")
|
| 75 |
async def predict_api(request: Request):
|
| 76 |
data = await request.json()
|
|
@@ -86,6 +65,6 @@ async def predict_api(request: Request):
|
|
| 86 |
outputs = model(**encoded)
|
| 87 |
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 88 |
predicted = torch.argmax(probs, dim=1).item()
|
| 89 |
-
|
| 90 |
label = list(category.keys())[predicted]
|
| 91 |
return {"text": text, "classification": label}
|
|
|
|
| 1 |
from fastapi import FastAPI, Request
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
import torch
|
|
|
|
| 5 |
import pickle
|
| 6 |
+
import os
|
| 7 |
+
import psutil
|
| 8 |
import sys
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
device = torch.device("cpu")
|
|
|
|
| 14 |
try:
|
| 15 |
with open("category.pkl", "rb") as f:
|
| 16 |
category = pickle.load(f)
|
| 17 |
+
print("β
category.pkl λ‘λ μ±κ³΅.")
|
| 18 |
except FileNotFoundError:
|
| 19 |
+
print("β Error: category.pkl νμΌμ μ°Ύμ μ μμ΅λλ€. νλ‘μ νΈ λ£¨νΈμ μλμ§ νμΈνμΈμ.")
|
| 20 |
sys.exit(1)
|
| 21 |
|
| 22 |
# ν ν¬λμ΄μ λ‘λ
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained("skt/kobert-base-v1")
|
| 24 |
+
print("β
ν ν¬λμ΄μ λ‘λ μ±κ³΅.")
|
| 25 |
|
| 26 |
HF_MODEL_REPO_ID = "hiddenFront/TextClassifier"
|
| 27 |
HF_MODEL_FILENAME = "textClassifierModel.pt"
|
| 28 |
|
| 29 |
+
# λ©λͺ¨λ¦¬ νμΈ
|
| 30 |
process = psutil.Process(os.getpid())
|
| 31 |
+
mem_before = process.memory_info().rss / (1024 * 1024)
|
| 32 |
+
print(f"π¦ λͺ¨λΈ λ€μ΄λ‘λ μ λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_before:.2f} MB")
|
|
|
|
| 33 |
|
| 34 |
+
# λͺ¨λΈ λ€μ΄λ‘λ λ° λ‘λ
|
| 35 |
try:
|
| 36 |
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
|
| 37 |
+
print(f"β
λͺ¨λΈ νμΌ λ€μ΄λ‘λ μ±κ³΅: {model_path}")
|
| 38 |
|
| 39 |
+
mem_after_dl = process.memory_info().rss / (1024 * 1024)
|
| 40 |
+
print(f"π¦ λͺ¨λΈ λ€μ΄λ‘λ ν λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_after_dl:.2f} MB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
model = torch.load(model_path, map_location=device) # μ 체 λͺ¨λΈ κ°μ²΄ λ‘λ
|
| 43 |
model.eval()
|
| 44 |
+
|
| 45 |
+
mem_after_load = process.memory_info().rss / (1024 * 1024)
|
| 46 |
+
print(f"π¦ λͺ¨λΈ λ‘λ ν λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_after_load:.2f} MB")
|
| 47 |
+
print("β
λͺ¨λΈ λ‘λ μ±κ³΅")
|
| 48 |
except Exception as e:
|
| 49 |
+
print(f"β Error: λͺ¨λΈ λ€μ΄λ‘λ λλ λ‘λ μ€ μ€λ₯ λ°μ: {e}")
|
| 50 |
sys.exit(1)
|
| 51 |
|
| 52 |
+
# μμΈ‘ API
|
| 53 |
@app.post("/predict")
|
| 54 |
async def predict_api(request: Request):
|
| 55 |
data = await request.json()
|
|
|
|
| 65 |
outputs = model(**encoded)
|
| 66 |
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 67 |
predicted = torch.argmax(probs, dim=1).item()
|
| 68 |
+
|
| 69 |
label = list(category.keys())[predicted]
|
| 70 |
return {"text": text, "classification": label}
|